[1] 王小明, 毛语实, 徐斌, 等. 内容结构保持的图像风格迁移方法[J]. 计算机工程与应用, 2023, 59(6): 146-154.
WANG X M, MAO Y S, XU B, et al. Content structure preserved image style transfer method[J]. Computer Engineering and Applications, 2023, 59(6): 146-154.
[2] 谭润, 田启川, 廉露, 等. 融合超分辨率重构的图像任意风格迁移[J]. 计算机工程与应用, 2024, 60(15): 170-179.
TAN R, TIAN Q C, LIAN L, et al. Image arbitrary style transfer via super-resolution reconstruction[J]. Computer Engineering and Applications, 2024, 60(15): 170-179.
[3] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232.
[4] HUANG X, LIU M Y, BELONGIE S, et al. Multimodal unsupervised image-to-image translation[C]//Proceedings of the European Conference on Computer Vision, 2018: 172-189.
[5] 孙泽, 张俊. 艺术图像生成的DeepDream技术研究与实现[J]. 电子技术与软件工程, 2021(18): 148-151.
SUN Z, ZHANG J. Research and implementation of DeepDream technology for artistic image generation[J]. Electronic Technology & Software Engineering, 2021(18): 148-151.
[6] KARRAS T, AITTALA M, LAINE S, et al. Alias-free generative adversarial networks[C]//Proceedings of the 35th Conference on Neural Information Processing Systems, 2021: 852-863.
[7] CHEN Y, LAI Y K, LIU Y J, et al. CartoonGAN: generative adversarial networks for photo cartoonization[C]//Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 9465-9474.
[8] 朱渊略. 基于开关式生成对抗网络的人脸编辑[D]. 深圳: 深圳大学, 2021.
ZHU Y L. Face editing based on switchable generative adversarial networks[D]. Shenzhen: Shenzhen University, 2021.
[9] RUDER M, DOSOVITSKIY A, BROX T. Artistic style transfer for videos[C]//Proceedings of the 38th German Conference on Pattern Recognition, 2016: 26-36.
[10] GATYS L A, ECKER A S, BETHGE M. A neural algorithm of artistic style[J]. arXiv:1508.06576, 2015.
[11] EFROS A A, FREEMAN W T. Image quilting for texture synthesis and transfer[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 2023: 571-576.
[12] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2414-2423.
[13] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the European Conference on Computer Vision, 2016: 694-711.
[14] YAO Y, REN J, XIE X, et al. Attention-aware multi-stroke style transfer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1467-1475.
[15] PARK D Y, LEE K H. Arbitrary style transfer with style-attentional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5880-5888.
[16] DENG Y, TANG F, DONG W, et al. Stytr2: image style transfer with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11326-11336.
[17] ULYANOV D, VEDALDI A, LEMPITSKY V. Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6924-6932.
[18] LI Y, FANG C, YANG J, et al. Universal style transfer via feature transforms[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 385-395.
[19] LIU S, LIN T, HE D, et al. AdaAttN: revisit attention mechanism in arbitrary neural style transfer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 6649-6658.
[20] HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the 16th IEEE International Conference on Computer Vision, 2017: 1510-1519.
[21] DENG Y, TANG F, DONG W, et al. Arbitrary video style transfer via multi-channel correlation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 1210-1217.
[22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[23] 谢刚, 王荃毅, 谢新林, 等. 融合多尺度深度卷积的轻量级Transformer交通场景语义分割算法[J]. 通信学报, 2023, 44(10): 1-13.
XIE G, WANG Q Y, XIE X L, et al. Lightweight Transformer traffic scene semantic segmentation algorithm integrating multi-scale depth convolution[J]. Journal on Communications, 2023, 44(10): 1-13.
[24] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[25] DENG Y, TANG F, DONG W, et al. Arbitrary style transfer via multi-adaptation network[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 2719-2727.
[26] CHEN H, WANG Z, ZHANG H, et al. Artistic style transfer with internal-external learning and contrastive learning[C]// Advances in Neural Information Processing Systems, 2021: 26561-26573.
[27] WU X, HU Z, SHENG L, et al. StyleFormer: real-time arbitrary style transfer via parametric style composition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 14618-14627.
[28] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision, 2018: 286-301.
[29] CHEN X, WANG X, ZHOU J, et al. Activating more pixels in image super-resolution transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 22367-22377.
[30] LIU Y, JIA Q, FAN X, et al. Cross-SRN: structure-preserving super-resolution network with cross convolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(8): 4927-4939.
[31] ZHANG Y, TANG F, DONG W, et al. Domain enhanced arbitrary image style transfer via contrastive learning[C]//Proceedings of the Special Interest Group for Computer Graphics Conference, 2022: 1-8.
[32] WEN L, GAO C, ZOU C. CAP-VSTNet: content affinity preserved versatile style transfer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 18300-18309.
[33] ZHANG Q, YANG Y B. Rest: an efficient transformer for visual recognition[C]//Advances in Neural Information Processing Systems, 2021: 15475-15485. |