计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 59-71.DOI: 10.3778/j.issn.1002-8331.2503-0022

• 热点与综述 • 上一篇    下一篇

心律失常和心肌梗死诊断中心电图智能分析方法研究综述

韩闯,范宝骐,余梦瑶,阙文戈   

  1. 1.郑州轻工业大学 计算机科学与技术学院,郑州 450000
    2.清华大学 自动化系,北京 100084
  • 出版日期:2025-12-01 发布日期:2025-12-01

Review of Intelligent Analysis Methods for Electrocardiograms in Diagnosis of Arrhythmia and Myocardial Infarction

HAN Chuang, FAN Baoqi, YU Mengyao, QUE Wenge   

  1. 1.School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450000, China
    2.Department of Automation, Tsinghua University, Beijing 100084, China
  • Online:2025-12-01 Published:2025-12-01

摘要: 心电图是诊断心律失常的金标准,且能诊断心肌梗死,其具有无创、实时和便捷等优点,已被广泛应用于临床中。开展心律失常和心肌梗死诊断中心电图智能分析研究具有重要意义。介绍了常用的心律失常和心肌梗死心电数据库;综述了近三年心电图智能分析中的最新技术,包括人工特征提取、卷积神经网络及其变体、图神经网络、自监督学习、联邦学习、主动学习、确定学习和生成式模型;从心电数据规模、分类模式、模型对比和模型复杂度等方面进行对比分析,并重点分析了不同方法的心电数据需求、优缺点、可解释性和应用场景;总结了现有方法在数据质量与类别不均衡、模型泛化性与可解释性的矛盾、隐私保护与协作效率的权衡、计算资源与临床部署的适配性等方面的不足,并给出了可行的解决方案。

关键词: 心电图(ECG), 心律失常(MI), 心肌梗死, 智能诊断, 深度学习

Abstract: Electrocardiogram (ECG) remains the gold standard for diagnosing arrhythmia and myocardial infarction (MI), offering advantages such as non-invasiveness, real-time monitoring, and portability, making it widely used in clinical practice. Research on intelligent analysis of ECG for these conditions holds great significance. Firstly, this paper introduces commonly used ECG databases for arrhythmia and MI. Then it reviews recent advances in ECG intelligent analysis over the past three years, including manual feature extraction, convolutional neural networks and their variants, graph neural networks, self-supervised learning, federated learning, active learning, deterministic learning, and generative model. Subsequently, it conducts an in-depth analysis of these methodologies from perspectives including data scale, classification patterns, model comparisons, and model complexity. The study compares the requirements, advantages, disadvantages, interpretability, and application scenarios of different approaches. Finally, it summarizes existing limitations in areas such as data quality and imbalance issues, conflicts between model generalizability and interpretability, trade-offs between privacy protection and collaborative efficiency, mismatches between computational resources and clinical deployment. Feasible solutions are proposed to address these challenges.

Key words: electrocardiogram (ECG), myocardial infarction (MI), arrhythmia, intelligent diagnosis, deep learning