
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 59-71.DOI: 10.3778/j.issn.1002-8331.2503-0022
韩闯,范宝骐,余梦瑶,阙文戈
出版日期:2025-12-01
发布日期:2025-12-01
HAN Chuang, FAN Baoqi, YU Mengyao, QUE Wenge
Online:2025-12-01
Published:2025-12-01
摘要: 心电图是诊断心律失常的金标准,且能诊断心肌梗死,其具有无创、实时和便捷等优点,已被广泛应用于临床中。开展心律失常和心肌梗死诊断中心电图智能分析研究具有重要意义。介绍了常用的心律失常和心肌梗死心电数据库;综述了近三年心电图智能分析中的最新技术,包括人工特征提取、卷积神经网络及其变体、图神经网络、自监督学习、联邦学习、主动学习、确定学习和生成式模型;从心电数据规模、分类模式、模型对比和模型复杂度等方面进行对比分析,并重点分析了不同方法的心电数据需求、优缺点、可解释性和应用场景;总结了现有方法在数据质量与类别不均衡、模型泛化性与可解释性的矛盾、隐私保护与协作效率的权衡、计算资源与临床部署的适配性等方面的不足,并给出了可行的解决方案。
韩闯, 范宝骐, 余梦瑶, 阙文戈. 心律失常和心肌梗死诊断中心电图智能分析方法研究综述[J]. 计算机工程与应用, 2025, 61(23): 59-71.
HAN Chuang, FAN Baoqi, YU Mengyao, QUE Wenge. Review of Intelligent Analysis Methods for Electrocardiograms in Diagnosis of Arrhythmia and Myocardial Infarction[J]. Computer Engineering and Applications, 2025, 61(23): 59-71.
| [1] GUPTA P, GUPTA M, KUMAR V. An active learning enhanced data programming (ActDP) framework for ECG time series[J]. Machine Learning: Science and Technology, 2024, 5(3): 035016. [2] LIU F F, LIU C Y, ZHAO L N, et al. An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection[J]. Journal of Medical Imaging and Health Informatics, 2018, 8(7): 1368-1373. [3] GOLDBERGER A L, AMARAL L A, GLASS L, et al. Physio-Bank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): 215-220. [4] WAGNER P, STRODTHOFF N, BOUSSELJOT R D, et al. PTB?XL, a large publicly available electrocardiography dataset[J]. Scientific Data, 2020, 7(1): 154. [5] CAI Z P, MA C Y, LI J Q, et al. Hybrid amplitude ordinal partition networks for ECG morphology discrimination: an application to PVC recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-13. [6] LI J, HUANG L, CAI D J, et al. Efficient ECG classification method for arrhythmia using MODWPT and adaptive incremental broad learning[J]. Biomedical Signal Processing and Control, 2025, 104: 107516. [7] KIRKBAS A, KIZILKAYA A. Automated ECG arrhythmia classification using feature images with common matrix approach-based classifier[J]. Sensors (Basel), 2025, 25(4): 1220. [8] DARMAWAHYUNI A, NURMAINI S, TUTUKO B, et al. An improved electrocardiogram arrhythmia classification performance with feature optimization[J]. BMC Medical Informatics and Decision Making, 2024, 24(1): 412. [9] BISWAKARMA A B, RAHUL J, KURMENDRA K. Automated classification of cardiac arrhythmia using short-duration ECG signals and machine learning[J]. Biomedical Physics & Engineering Express, 2025, 11(2): 025020. [10] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. [11] QIANG Y P, DONG X D, YANG Y. Automatic detection and localisation of myocardial infarction using multi-channel dense attention neural network[J]. Biomedical Signal Processing and Control, 2024, 89: 105766. [12] HE Z Y, YUAN S Y, ZHAO J H, et al. A robust myocardial infarction localization system based on multi-branch residual shrinkage network and active learning with clustering[J]. Biomedical Signal Processing and Control, 2023, 80: 104238. [13] HAN C, SUN J J, BIAN Y N, et al. Automated detection and localization of myocardial infarction with interpretability analysis based on deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-12. [14] 沈尧, 马小虎, 张扬, 等. 基于深度残差记忆网络的心律失常分类方法[J]. 计算机仿真, 2022, 39(12): 342-346. SHEN Y, MA X H, ZHANG Y, et al. Classification method of arrhythmia based on deep residual memory network[J]. Computer Simulation, 2022, 39(12): 342-346. [15] HU R, CHEN J, ZHOU L. A Transformer-based deep neural network for arrhythmia detection using continuous ECG signals[J]. Computers in Biology and Medicine, 2022, 144: 105325. [16] MENG L X, TAN W J, MA J G, et al. Enhancing dynamic ECG heartbeat classification with lightweight transformer model[J]. Artificial Intelligence in Medicine, 2022, 124: 102236. [17] XIA Y, XIONG Y Q, WANG K Q. A Transformer model blended with CNN and denoising autoencoder for inter-patient ECG arrhythmia classification[J]. Biomedical Signal Processing and Control, 2023, 86: 105271. [18] JIN Y R, LIU J L, LIU Y Q, et al. A novel interpretable method based on dual-level attentional deep neural network for actual multilabel arrhythmia detection[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11. [19] YU J, GAO J, WANG N, et al. Spa-tem MI: a spatial-temporal network for detecting and locating myocardial infarction[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-12. [20] HAMMAD M, EL-LATIFA A A, HUSSAIN A, et al. Deep learning models for arrhythmia detection in IoT healthcare applications[J]. Computers and Electrical Engineering, 2022, 100: 108011. [21] JAHMUNAH V, NG E Y K, TAN R S, et al. Explainable detection of myocardial infarction using deep learning models with Grad?CAM technique on ECG signals[J]. Computers in Biology and Medicine, 2022, 146: 105550. [22] LIU K G, LIU T, WEN D W, et al. SRTNet: scanning, reading, and thinking network for myocardial infarction detection and localization[J]. Expert Systems with Applications, 2024, 240: 122402. [23] KIM N, SEO W, KIM J H, et al. WavelNet: a novel convolutional neural network architecture for arrhythmia classification from electrocardiograms[J]. Computer Methods and Programs in Biomedicine, 2023, 231: 107375. [24] 李国权, 朱双青, 刘梓潼, 等. 基于CvT-13和多模态图像融合的心电分类算法[J]. 生物医学工程学杂志, 2023, 40(4): 736-742. LI G Q, ZHU S Q, LIU Z T, et al. Electrocardiogram classification algorithm based on CvT-13 and multimodal image fusion[J]. Journal of Biomedical Engineering, 2023, 40(4): 736-742. [25] JI C Q, WANG L Y, QIN J, et al. MSGformer: a multi-scale grid transformer network for 12-lead ECG arrhythmia detection[J]. Biomedical Signal Processing and Control, 2024, 87: 105499. [26] LIU Z Y, DENG Z H, LI S M, et al. A multimodal ECG diagnostic framework based on ECG-QRS knowledge graphs and attention mechanisms: enhancing clinical interpretability of ECG diagnostic classification[J]. Biomedical Signal Processing and Control, 2025, 105: 107623. [27] KAVAK S, CHIU X D, YEN S J, et al. Application of CNN for detection and localization of STEMI using 12-lead ECG images[J]. IEEE Access, 2022, 10: 38923-38930. [28] PAN W B, AN Y, GUAN Y X, et al. MCA-Net: a multi-task channel attention network for Myocardial infarction detection and location using 12-lead ECGs[J]. Computers in Biology and Medicine, 2022, 150: 106199. [29] PRABHAKARARAO E, DANDAPAT S. Multi-scale convolutional neural network ensemble for multi-class arrhythmia classification[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(8): 3802-3812. [30] PARK J, LEE K, PARK N, et al. Self-attention LSTM-FCN model for arrhythmia classification and uncertainty assessment[J]. Artificial Intelligence in Medicine, 2023, 142: 102570. [31] 王建荣, 尉向前, 辛彬彬, 等. 一种改进U-Net网络的心电图分类算法研究 [J]. 重庆理工大学学报(自然科学), 2024, 38(1): 142-149. WANG J R, WEI X Q, XIN B B, et al. Research on an electrocardiogram classification algorithm for improving U-Net network[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(1): 142-149. [32] HE C, LIU M, XIONG P, et al. Localization of myocardial infarction using a multi-branch weight sharing network based on 2-D vectorcardiogram[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105428. [33] HAN K, WANG Y, GUO J, et al. Vision GNN: an image is worth graph of nodes[C]//Advances in Neural Information Processing Systems, 2022: 8291-303. [34] QIANG Y P, DONG X D, LIU X L, et al. Conv-RGNN: an efficient convolutional residual graph neural network for ECG classification[J]. Computer Methods and Programs in Biomedicine, 2024, 257: 108406. [35] WANG D M, HU Q H, CAO C G, et al. PM2ECGCN: parallelized spatial-temporal structures of multi-lead ECG with graph convolution network for multi-center cardiac disease diagnosis[J]. Expert Systems with Applications, 2024, 250: 123869. [36] DUONG L T, DOAN T T H, CHU C Q, et al. Fusion of edge detection and graph neural networks to classifying electrocardiogram signals[J]. Expert Systems with Applications, 2023, 225: 120107. [37] GE Z Y, CHENG H Q, TONG Z, et al. A knowledge-driven graph convolutional network for abnormal electrocardiogram diagnosis[J]. Knowledge-Based Systems, 2024, 296: 111906. [38] MA H, XIA L N. Atrial fibrillation detection algorithm based on graph convolution network[J]. IEEE Access, 2023, 11: 67191-67200. [39] ANDAYESHGAR B, ABDALI-MOHAMMADI F, SEPAHVAND M, et al. Arrhythmia detection by the graph convolution network and a proposed structure for communication between cardiac leads[J]. BMC Medical Research Methodology, 2024, 24(1): 96. [40] 贺煜航, 刘棪, 陈刚. 基于自适应图卷积网络的心电图多标签分类模型 [J]. 计算机工程, 2022, 48(12): 261-269. HE Y H, LIU Y, CHEN G. Multi-label classification model of ECG based on adaptive graph convolution network[J]. Computer Engineering, 2022, 48(12): 261-269. [41] ZHANG H C, LIU W H, CHANG S, et al. ST-ReGE: a novel spatial-temporal residual graph convolutional network for CVD[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(1): 216-227. [42] HE Z Y, CHEN Y F, YUAN S Y, et al. A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification[J]. Expert Systems with Applications, 2023, 221: 119711. [43] 喻云虎, 杨湘, 陈艳红. 嵌入导联上下文编码的图卷积神经网络心律失常分类模型[J]. 计算机工程与应用, 2025, 61(3): 212-222. YU Y H, YANG X, CHEN Y H. Lead context encoding embedded GCN for arrhythmia classification[J]. Computer Engineering and Applications, 2025, 61(3): 212-222. [44] CHEN Y T, QIU S, WANG Z L, et al. Multiperceptive region of spatial-temporal graph convolutional shrinkage network for arrhythmia recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-11. [45] CHENG Y H, ZHU W L, LI D Y, et al. Multi-label classification of arrhythmia using dynamic graph convolutional network based on encoder-decoder framework[J]. Biomedical Signal Processing and Control, 2024, 95: 106348. [46] JING L, TIAN Y. Self-supervised visual feature learning with deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058. [47] JIN Y R, LI Z Y, TIAN Y Y, et al. A self-supervised framework for computer-aided arrhythmia diagnosis[J]. Applied Soft Computing, 2024, 164: 112024. [48] SOLTANIEH S, HASHEMI J, ETEMAD A. In-distribution and out-of-distribution self-supervised ECG representation learning for arrhythmia detection[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(2): 789-800. [49] ZHU X Q, SHI M N, YU X X, et al. Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation[J]. Biomedical Signal Processing and Control, 2025, 100: 106939. [50] YUN D, YANG H L, KWON S, et al. Automatic segmentation of atrial fibrillation and flutter in single-lead electrocardiograms by self-supervised learning and Transformer architecture[J]. Journal of the American Medical Informatics Association, 2023, 31(1): 79-88. [51] YANG S X, LIAN C, ZENG Z G, et al. Masked self-supervised ECG representation learning via multiview information bottleneck[J]. Neural Computing and Applications, 2024, 36(14): 7625-7637. [52] LIU Z Y, LIN C H, HSU Y C, et al. Universal representations in cardiovascular ECG assessment: a self-supervised learning approach[J]. International Journal of Medical Informatics, 2025, 195: 105742. [53] 陈鹏, 邓淼磊, 樊好义, 等. 心电特征引导下的自监督房颤异常检测方法[J]. 计算机工程与应用, 2025, 61(2): 208-218. CHEN P, DENG M L, FAN H Y, et al. Self-supervised atrial fibrillation anomaly detection method guided by electrocardiogram features[J]. Computer Engineering and Applications, 2025, 61(2): 208-218. [54] KONECNY J, MCMAHAN H B, RAMAGE D, et al. Federated optimization: distributed machine learning for on-device intelligence[J]. arXiv:1610.02527, 2016. [55] RAZA A, TRAN K P, KOEHL L, et al. Designing ECG monitoring healthcare system with federated transfer learning and explainable AI[J]. Knowledge-Based Systems, 2022, 236: 107763. [56] ASIF R N, DITTA A, ALQUHAYZ H, et al. Detecting electrocardiogram arrhythmia empowered with weighted federated learning[J]. IEEE Access, 2024, 12: 1909-1926. [57] RAJAGOPAL S M, SUPRIYA M, BUYYA R. FedSDM: federated learning based smart decision making module for ECG data in IoT integrated Edge-Fog-Cloud computing environments[J]. Internet of Things, 2023, 22: 100784. [58] YING Z B, ZHANG G Y, PAN Z J, et al. FedECG: a federated semi-supervised learning framework for electrocardiogram abnormalities prediction[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(6): 101568. [59] CHORNEY W, WANG H F. Towards federated transfer learning in electrocardiogram signal analysis[J]. Computers in Biology and Medicine, 2024, 170: 107984. [60] ALRESHIDI F S, ALSAFFAR M, CHENGODEN R, et al. Fed-CL—an atrial fibrillation prediction system using ECG signals employing federated learning mechanism[J]. Scientific Reports, 2024, 14(1): 21038. [61] WEIMANN K, CONRAD T O F. Federated learning with deep neural networks: a privacy-preserving approach to enhanced ECG classification[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(11): 6931-6943. [62] TANG R J, LUO J Z, QIAN J B, et al. Personalized federated learning for ECG classification based on feature alignment[J]. Security and Communication Networks, 2021, 2021: 6217601. [63] JOSHI A J, PORIKLI F, PAPANIKOLOPOULOS N. Multi-class active learning for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 2372-2379. [64] WANG H Y, ZHOU Y J, NIU X D, et al. A low-cost and stable DAL arrhythmia detection algorithm based on the weak stratification query strategy of morphological statistical features[J]. Expert Systems with Applications, 2025, 261: 125482. [65] PASOLLI E, MELGANI F. Active learning methods for electrocardiographic signal classification[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(6): 1405-1416. [66] HE Z Y, YUAN Z Y, AN P F, et al. MFB-LANN: a lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning[J]. Computer Methods and Programs in Biomedicine, 2021, 210: 106379. [67] HE Z Y, YUAN S Y, ZHAO J H, et al. A novel myocardial infarction localization method using multi-branch DenseNet and spatial matching-based active semi-supervised learning[J]. Information Sciences, 2022, 606: 649-668. [68] FAN W, YANG W Y, CHEN T, et al. AOCBLS: a novel active and online learning system for ECG arrhythmia classification with less labeled samples[J]. Knowledge-Based Systems, 2024, 304: 112553. [69] WANG C, HILL D J. Learning from neural control[J]. IEEE Transactions on Neural Networks, 2006, 17(1): 130-146. [70] SUN Q H, LIANG C M, CHEN T R, et al. Early detection of myocardial ischemia in 12‐lead ECG using deterministic learning and ensemble learning[J]. Computer Methods and Programs in Biomedicine, 2022, 226: 107124. [71] DONG X D, WANG C, SI W J. ECG beat classification via deterministic learning[J]. Neurocomputing, 2017, 240: 1-12. [72] 孙庆华, 王磊, 王聪, 等. 基于确定学习及心电动力学图的心肌缺血早期检测研究[J]. 自动化学报, 2020, 46(9): 1908-1926. SUN Q H, WANG L, WANG C, et al. Study on early detection of myocardial ischemia based on definite learning and electrocardiodynamic charts [J]. Automation News, 2020, 46(9): 1908-1926. [73] SUN Q H, WANG L, LI J L, et al. Multi-phase ECG dynamic features for detecting myocardial ischemia and identifying its etiology using deterministic learning[J]. Biomedical Signal Processing and Control, 2024, 88: 105498. [74] ZENG W, YUAN C Z. Myocardial infarction detection using ITD, DWT and deterministic learning based on ECG signals[J]. Cognitive Neurodynamics, 2023, 17(4): 941-964. [75] ZENG W, SHAN L M, YUAN C Z, et al. Detection of myocardial infarction using Shannon energy envelope, FA-MVEMD and deterministic learning[J]. Complex & Intelligent Systems, 2024, 10(4): 4755-4773. [76] SUN Q H, LI J L, LIANG C M, et al. A multi-lead group network for myocardial infarction detection and localization based on clinical knowledge-driven and dynamic-static feature fusion[J]. Expert Systems with Applications, 2025, 274: 126901. [77] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2014:2672-2680. [78] XIA Y, WANG W Y, WANG K Q. ECG signal generation based on conditional generative models[J]. Biomedical Signal Processing and Control, 2023, 82: 104587. [79] ZHOU F Y, LI J J. ECG data enhancement method using generate adversarial networks based on Bi-LSTM and CBAM[J]. Physiological Measurement, 2024, 45(2): 025003. [80] 秦静, 韩悦, 王立永, 等. 基于GAN和MS-ResNet的房颤自动检测模型[J]. 应用科学学报, 2024, 42(1): 15-26. QIN J, HAN Y, WANG L Y, et al. Automatic detection model of atrial fibrillation based on GAN and MS-ResNet[J]. Journal of Applied Science, 2024, 42(1): 15-26. [81] ALCARAZ J M L, STRODTHOFF N. Diffusion-based conditional ECG generation with structured state space models[J]. Computers in Biology and Medicine, 2023, 163: 107115. [82] ADIB E, FERNANDEZ A S, AFGHAH F, et al. Synthetic ECG signal generation using probabilistic diffusion models[J]. IEEE Access, 2023, 11: 75818-75828. [83] ZAMA M H, SCHWENKER F. ECG synthesis via diffusion-based state space augmented transformer[J]. Sensors (Basel), 2023, 23(19): 8328. |
| [1] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [2] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [3] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [4] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [5] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [6] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [7] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [8] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [9] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [10] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [11] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [12] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [13] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [14] | 王文举, 唐邦, 顾泽骅, 王森. 深度学习的多视角三维重建技术综述[J]. 计算机工程与应用, 2025, 61(6): 22-35. |
| [15] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||