计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 38-58.DOI: 10.3778/j.issn.1002-8331.2503-0133

• 热点与综述 • 上一篇    下一篇

工业图像表面异常定位的无监督学习方法综述

赵俊,赵涓涓   

  1. 1.太原理工大学 计算机科学与技术学院,山西 晋中 030600 
    2.太原理工大学 软件学院,山西 晋中 030600
  • 出版日期:2025-12-01 发布日期:2025-12-01

Review of Unsupervised Learning Methods for Surface Anomaly Localization in Industrial Images

ZHAO Jun, ZHAO Juanjuan   

  1. 1.College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
    2.School of Software, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
  • Online:2025-12-01 Published:2025-12-01

摘要: 深度学习的快速发展为工业图像的异常检测和定位奠定了里程碑,现有研究对全面深入探索该领域具体方法和新兴趋势的需求不断增长,超越了传统的监督训练范式。探讨了基于自监督和无监督学习的异常定位方法的背景动机、发展现状和核心挑战,从神经网络架构设计、特殊应用场景分析、损失函数改进、评价指标和公开数据集的使用情况等角度全面回顾了工业领域现有重要研究。重点研究了少样本学习下,大型视觉语言模型对多类别统一异常定位任务的认知和推理作用,总结了现有研究成果并指出了未来的研究方向,旨在促进利用大模型的能力来增强复杂真实场景中异常定位算法的稳健性和系统开发的高效性。这项全面的分析旨在弥合现有的知识差距,为研究人员提供宝贵的见解,并为塑造工业异常定位研究的未来作出贡献。

关键词: 智能制造, 工业图像处理, 异常检测与定位, 深度学习, 无监督学习

Abstract: The rapid development of deep learning has marked a milestone for anomaly detection and localization in industrial images. The demand for comprehensive and in-depth exploration of specific methods and emerging trends in this field continues to grow in existing research, surpassing traditional supervised training paradigms. The background, current developments, and key challenges of anomaly localization methods based on self-supervised and unsupervised learning are discussed. The review offers a comprehensive analysis of existing outstanding research in the industrial domain, addressing aspects such as neural network architecture design, special application scenarios, loss function improvements, collection of public datasets, and the use of evaluation metrics. Furthermore, this paper focuses on the role of large visual-language models in few-shot learning for multi-class unified anomaly localization tasks, exploring their cognitive and reasoning capabilities. It summarizes current research findings and highlights future research directions, aiming to enhance the robustness of anomaly localization algorithms in complex real-world scenarios and improve the efficiency of system development. This comprehensive analysis seeks to bridge existing knowledge gaps, provide valuable insights for researchers, and contribute to shaping the future of industrial anomaly localization research.

Key words: intelligent manufacturing, industrial image processing, anomaly detection and localization, deep learning, unsupervised learning