[1] 伍晓晖, 田启川. 交通标志识别方法综述[J]. 计算机工程与应用, 2020, 56(10): 20-26.
WU X H, TIAN Q C. Survey of traffic sign recognition[J]. Computer Engineering and Applications, 2020, 56(10): 20-26.
[2] SOUANI C, FAIEDH H, BESBES K. Efficient algorithm for automatic road sign recognition and its hardware implementation[J]. Journal of Real-Time Image Processing, 2014, 9(1): 79-93.
[3] BARODI A, BAJIT A, ZEMMOURI A, et al. Improved deep learning performance for real-time traffic sign detection and recognition applicable to intelligent transportation systems[J]. International Journal of Advanced Computer Science and Applications, 2022, 13(5).
[4] FLORES-CALERO M, ASTUDILLO C A, GUEVARA D, et al. Traffic sign detection and recognition using YOLO object detection algorithm: a systematic review[J]. Mathematics, 2024, 12(2): 297.
[5] HORAK K, CIP P, DAVIDEK D. Automatic traffic sign detection and recognition using colour segmentation and shape identification[J]. MATEC Web of Conferences, 2016, 68: 17002.
[6] FLEYEH H. A novel fuzzy approach for shape determination of traffic signs[C]//Proceedings of the Indian International Conference on Artificial Intelligence (IICAI), 2005: 1847-1862.
[7] TIMOFTE R, ZIMMERMANN K, VAN GOOL L. Multi-view traffic sign detection, recognition, and 3D localisation[J]. Machine Vision and Applications, 2014, 25(3): 633-647.
[8] ELLAHYANI A, MOHAMED E L, EL I, et al. Traffic sign detection and recognition using features combination and random forests[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(1): 686-693.
[9] SONG Y C, GUO S Q. Traffic sign recognition based on HOG feature extraction[J]. Journal of Measurements in Engineering, 2021, 9(3): 142-155.
[10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[11] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2016: 1440-1448.
[12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[15] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 765-781.
[16] DU C J, SU S Y, LIN C W, et al. A lightweight network for traffic sign detection via multiple scale context awareness and semantic information guidance[J]. Scientific Reports, 2025, 15: 10110.
[17] DU Q L, WU Y M, TIAN L F, et al. A lightweight traffic sign detection algorithm based on improved YOLOv7[C]//Proceedings of the 2023 4th International Conference on Intelligent Computing and Human-Computer Interaction. Piscataway: IEEE, 2023: 428-431.
[18] CHEN B X, FAN X W. MSGC-YOLO: an improved lightweight traffic sign detection model under snow conditions[J]. Mathematics, 2024, 12(10): 1539.
[19] CHENG T H, SONG L, GE Y X, et al. YOLO-world: real-time open-vocabulary object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16901-16911.
[20] QIU J, ZHANG W B, XU S Y, et al. DP-YOLO: a lightweight traffic sign detection model for small object detection[J]. Digital Signal Processing, 2025, 165: 105311.
[21] LI J, DENG Q W, GAO W X, et al. DSF-YOLO for robust multiscale traffic sign detection under adverse weather conditions[J]. Scientific Reports, 2025, 15: 24550.
[22] FANG S M, CHEN C M, LI Z J, et al. YOLO-ADual: a lightweight traffic sign detection model for a mobile driving system[J]. World Electric Vehicle Journal, 2024, 15(7): 323.
[23] LIN Z Y, WU Y F, MA Y H, et al. YOLO-LLTS: real-time low-light traffic sign detection via prior-guided enhancement and multi-branch feature interaction[J]. arXiv:2503.13883, 2025.
[24] WANG A, CHEN H, LIN Z J, et al. RepViT: revisiting mobile CNN from ViT perspective[J]. arXiv:2307.09283, 2023.
[25] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of theEuropean Conference on Computer Vision. Cham: Springer, 2025: 1-21.
[26] CAI X H, LAI Q X, WANG Y W, et al. Poly kernel inception network for remote sensing detection[J]. arXiv:2403.06258, 2024.
[27] LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 6153-6162.
[28] VARGHESE R, M S. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems. Piscataway: IEEE, 2024: 1-6.
[29] MA G, XU C, XU Z, et al. An improved small target detection algorithm based on YOLOv8s[J]. Radioengineering, 2025, 34(2): 206-223. |