[1] GAMMULLE H, AHMEDT-ARISTIZABAL D, DENMAN S, et al. Continuous human action recognition for human-machine interaction: a review[J]. ACM Computing Surveys, 2023, 55(13S): 1-38.
[2] NIU Z H, LU K, XUE J, et al. From methods to applications: a review of deep 3D human motion capture[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(11): 11340-11359.
[3] DUAN H D, ZHAO Y, CHEN K, et al. Revisiting skeleton-based action recognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2959-2968.
[4] CAI D Q, KANG Y, YAO A B, et al. Ske2Grid: skeleton-to-grid representation learning for action recognition[C]//Proceedings of the 40th International Conference on Machine Learning, 2023: 3431-3441.
[5] SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recog-nition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12018-12027.
[6] ZHANG Y, SUN Z H, DAI M, et al. Cross-scale spatiotemporal refinement learning for skeleton-based action recognition[J]. IEEE Signal Processing Letters, 2024, 31: 441-445.
[7] TU Z G, ZHANG J X, LI H Y, et al. Joint-bone fusion graph convolutional network for semi-supervised skeleton action recognition[J]. IEEE Transactions on Multimedia, 2023, 25: 1819-1831.
[8] SONG Y F, ZHANG Z, SHAN C F, et al. Constructing stronger and faster baselines for skeleton-based action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1474-1488.
[9] HU H S, FANG Y, HAN M, et al. Multi-scale adaptive graph convolution network for skeleton-based action recognition[J]. IEEE Access, 2024, 12: 16868-16880.
[10] 王彩玲, 闫晶晶, 张智栋. 基于多模态数据的人体行为识别方法研究综述[J]. 计算机工程与应用, 2024, 60(9): 1-18.
WANG C L, YAN J J, ZHANG Z D. Review on human action recognition methods based on multimodal data[J]. Computer Engineering and Applications, 2024, 60(9): 1-18.
[11] 吴浩原, 熊辛, 闵卫东, 等. 基于多级特征融合和时域扩展的行为识别方法[J]. 计算机工程与应用, 2023, 59(7): 134-142.
WU H Y, XIONG X, MIN W D, et al. Action recognition method based on multi-level feature fusion and temporal extension[J]. Computer Engineering and Applications, 2023, 59(7): 134-142.
[12] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 7444-7452.
[13] SHAO Y M, MAO L T, YE L X, et al. H2GCN: a hybrid hyper-graph convolution network for skeleton-based action recognition[J]. Journal of King Saud University-Computer and Information Sciences, 2024, 36(5): 102072.
[14] CHEN Y X, ZHANG Z Q, YUAN C F, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 13339-13348.
[15] HUANG J H, WANG Z M, PENG J, et al. Feature reconstruction graph convolutional network for skeleton-based action recognition[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106855.
[16] ZHAO Z F, CHEN Z W, LI J N, et al. Glimpse and zoom: spatio-temporal focused dynamic network for skeleton-based action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(7): 5616-5629.
[17] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[18] SHI L, ZHANG Y F, CHENG J, et al. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[J]. IEEE Transactions on Image Processing, 2020, 29: 9532-9545.
[19] SONG Y F, ZHANG Z, SHAN C F, et al. Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1625-1633.
[20] SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+D: a large scale dataset for 3D human activity analysis[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1010-1019.
[21] LIU J, SHAHROUDY A, PEREZ M, et al. NTU RGB D 120: a large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2684-2701.
[22] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[23] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[24] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[25] QIN Z Q, ZHANG P Y, WU F, et al. FcaNet: frequency channel attention networks[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 763-772.
[26] SALMAN H, PARKS C, SWAN M, et al. OrthoNets: orthogonal channel attention networks[C]//Proceedings of the 2023 IEEE International Conference on Big Data. Piscataway: IEEE, 2024: 829-837.
[27] CHI H G, HA M H, CHI S, et al. InfoGCN: representation learning for human skeleton-based action recognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 20154-20164.
[28] QIU H L, HOU B. Multi-grained clip focus for skeleton-based action recognition[J]. Pattern Recognition, 2024, 148: 110188.
[29] YE F F, PU S L, ZHONG Q Y, et al. Dynamic GCN: context-enriched topology learning for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 55-63.
[30] LIU Z Y, ZHANG H W, CHEN Z H, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 140-149.
[31] WANG J, LUO Y M. SA-GCN: structure-aware graph convolutional networks for crowd pose estimation[J]. The Journal of Supercomputing, 2023, 79(9): 10046-10062.
[32] TIAN H Y, MA X, LI X, et al. Skeleton-based action recognition with select-assemble-normalize graph convolutional networks[J]. IEEE Transactions on Multimedia, 2023, 25: 8527-8538. |