[1] 王曦, 于鸣, 任洪娥. UNET与FPN相结合的遥感图像语义分割[J]. 液晶与显示, 2021, 36(3): 475-483.
WANG X, YU M, REN H E. Remote sensing image semantic segmentation combining UNET and FPN[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 475-483.
[2] 胡宇翔, 余长宏, 高明. 多模态融合的遥感图像语义分割网络[J]. 计算机工程与应用, 2024, 60(15): 234-242.
HU Y X, YU C H, GAO M. Remote sensing image semantic segmentation network based on multimodal fusion[J]. Computer Engineering and Applications, 2024, 60(15): 234-242.
[3] MA J, ZHANG Y, LI X. Deep learning for hyperspectral image analysis: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(1): 55-76.
[4] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[5] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[6] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[7] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3141-3149.
[8] YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 334-349.
[9] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 9992-10002.
[10] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[11] HUANG Z L, WANG X G, WEI Y C, et al. CCNet: criss-cross attention for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 6896-6908.
[12] WU Y X, HE K M. Group normalization[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[13] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[14] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv: 1706.05587, 2017.
[15] WANG L B, LI R, WANG D Z, et al. Transformer meets convolution: a bilateral awareness network for semantic segmentation of very fine resolution urban scene images[J]. Remote Sensing, 2021, 13(16): 3065.
[16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[17] JADON S. A survey of loss functions for semantic segmentation[C]//Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. Piscataway: IEEE, 2020: 1-7.
[18] HUA B S, TRAN M K, YEUNG S K. Pointwise convolutional neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 984-993.
[19] LI R, ZHENG S Y, ZHANG C, et al. ABCNet: attentive bilateral contextual network for efficient semantic segmentation of fine-resolution remotely sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181: 84-98.
[20] WANG G, LI W, ZOU L, et al. MaNet: a robust and efficient convolutional neural network for medical image analysis[J]. Computers in Biology and Medicine, 2018, 102: 52-67.
[21] WANG L B, LI R, ZHANG C, et al. UNetFormer: a UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196-214.
[22] LI R, ZHENG S Y, DUAN C X, et al. Multistage attention ResU-net for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8009205.
[23] STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: transformer for semantic segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 7242-7252.
[24] DIAKOGIANNIS F I, FURBY S, CACCETTA P, et al. SSG2: a new modelling paradigm for semantic segmentation[J]. arXiv:2310.08671, 2023.
[25] LUO Z, YANG W, YUAN Y, et al. Semantic segmentation of agricultural images: a survey[J]. Information Processing in Agriculture, 2024, 11(2): 172-186.
[26] LI L, ZHOU T, WANG W, et al. Deep hierarchical semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1246-1257.
[27] GU J, KWON H, WANG D, et al. Multi-scale high-resolution vision transformer for semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12094-12103.
[28] 李俊杰, 易诗, 何润华, 等. 基于窗口注意力聚合Swin Transformer的无人机影像语义分割方法[J]. 计算机工程与应用, 2024, 60(15): 198-210.
LI J J, YI S, HE R H, et al. Semantic segmentation method of UAV image based on window attention aggregation swin transformer[J]. Computer Engineering and Applications, 2024, 60(15): 198-210. |