[1] 彭大鑫, 甄彤, 李智慧. 低光照图像增强研究方法综述[J]. 计算机工程与应用, 2023, 59(18): 14-27.
PENG D X, ZHEN T, LI Z H. Survey of research methods for low light image enhancement[J]. Computer Engineering and Applications, 2023, 59(18): 14-27.
[2] 李扬, 杨海涛, 孔卓, 等. 像素级红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2022, 58(14): 40-50.
LI Y, YANG H T, KONG Z, et al. Review of pixel-level infrared and visible image fusion methods[J]. Computer Engineering and Applications, 2022, 58(14): 40-50.
[3] 张宏钢, 杨海涛, 郑逢杰, 等. 特征级红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2024, 60(18): 17-31.
ZHANG H G, YANG H T, ZHENG F J, et al. Review of feature-level infrared and visible image fusion[J]. Computer Engineering and Applications, 2024, 60(18): 17-31.
[4] WANG W S, REN J X, SU C, et al. Ship detection in multispectral remote sensing images via saliency analysis[J]. Applied Ocean Research, 2021, 106: 102448.
[5] ZHANG H, FROMONT E, LEFEVRE S, et al. Guided attentive feature fusion for multispectral pedestrian detection[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 72-80.
[6] AN Z J, LIU C L, HAN Y Q. Effectiveness guided cross-modal information sharing for aligned RGB-T object detection[J]. IEEE Signal Processing Letters, 2022, 29: 2562-2566.
[7] 白玉, 侯志强, 刘晓义, 等. 基于可见光图像和红外图像决策级融合的目标检测算法[J]. 空军工程大学学报(自然科学版), 2020, 21(6): 53-59.
BAI Y, HOU Z Q, LIU X Y, et al. An object detection algorithm based on decision-level fusion of visible light image and infrared image[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(6): 53-59.
[8] 山显英, 张琳, 李泽慧. 深度学习驱动下的目标检测研究进展综述[J]. 计算机工程与应用, 2025, 61(1): 24-41.
SHAN X Y, ZHANG L, LI Z H. Review of research progress in object detection driven by deep learning[J]. Computer Engineering and Applications, 2025, 61(1): 24-41.
[9] 张秀再, 邱野, 沈涛. 基于改进SSD算法的地铁场景小行人目标检测[J]. 计算机研究与发展, 2025, 62(2): 397-407.
ZHANG X Z, QIU Y, SHEN T. Small pedestrian target detection in subway scene based on improved SSD algorithm[J]. Journal of Computer Research and Development, 2025, 62(2): 397-407.
[10] 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708.
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708.
[11] 范加利, 田少兵, 黄葵, 等. 基于Faster R-CNN的航母舰面多尺度目标检测算法[J]. 系统工程与电子技术, 2022, 44(1): 40-46.
FAN J L, TIAN S B, HUANG K, et al. Multi-scale object detection algorithm for aircraft carrier surface based on Faster R-CNN[J]. Systems Engineering and Electronics, 2022, 44(1): 40-46.
[12] LI L, HASSAN M A, YANG S R, et al. Development of image-based wheat spike counter through a Faster R-CNN algorithm and application for genetic studies[J]. The Crop Journal, 2022, 10(5): 1303-1311.
[13] 高海涛, 朱超涵, 张天棋, 等. 基于深度学习的无锚框目标检测算法综述[J]. 机床与液压, 2024, 52(1): 202-209.
GAO H T, ZHU C H, ZHANG T Q, et al. Overview of anchor-free object detection algorithms based on depth learning[J]. Machine Tool & Hydraulics, 2024, 52(1): 202-209.
[14] 李悦言, 程培涛, 杜淑幸. 一种改进CenterNet的轻量化目标检测算法[J]. 西安电子科技大学学报, 2022, 49(5): 137-144.
LI Y Y, CHENG P T, DU S X. Lightweight object detection algorithm based on the improved CenterNet[J]. Journal of Xidian University, 2022, 49(5): 137-144.
[15] 杜昌皓, 张智. 改进FCOS算法的车辆检测方法研究[J]. 计算机应用与软件, 2024, 41(6): 257-262.
DU C H, ZHANG Z. Improved FCOS algorithm for vehicle detection[J]. Computer Applications and Software, 2024, 41(6): 257-262.
[16] 刘鑫, 黄进, 杨涛, 等. 改进CenterNet的无人机小目标捕获检测方法[J]. 计算机工程与应用, 2022, 58(14): 96-104.
LIU X, HUANG J, YANG T, et al. Improved small object detection for UAV acquisition based on CenterNet[J]. Computer Engineering and Applications, 2022, 58(14): 96-104.
[17] 陈洛轩, 林成创, 郑招良, 等. Transformer在计算机视觉场景下的研究综述[J]. 计算机科学, 2023, 50(12): 130-147.
CHEN L X, LIN C C, ZHENG Z L, et al. Review of transformer in computer vision[J]. Computer Science, 2023, 50(12): 130-147.
[18] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[19] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv: 2010.04159, 2020.
[20] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J]. arXiv:2410.17725, 2024.
[21] PENG Y P, CHEN D Z, SONKA M. U-Net V2: rethinking the skip connections of U-Net for medical image segmentation[C]//Proceedings of the 2025 IEEE 22nd International Symposium on Biomedical Imaging. Piscataway: IEEE, 2025: 1-5.
[22] LIU J Y, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5792-5801.
[23] JIA X Y, ZHU C, LI M Z, et al. LLVIP: a visible-infrared paired dataset for low-light vision[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 3489-3497.
[24] ZHANG H, FROMONT E, LEFEVRE S, et al. Multispectral fusion for object detection with cyclic fuse-and-refine blocks[C]//Proceedings of the 2020 IEEE International Conference on Image Processing. Piscataway: IEEE, 2020: 276-280.
[25] RAO D Y, XU T Y, WU X J. TGFuse: an infrared and visible image fusion approach based on transformer and generative adversarial network[J]. IEEE Transactions on Image Processing, 2023. DOI: 10. 1109/TIP. 2023. 3273451.
[26] FANG Q Y, HAN D P, WANG Z K. Cross-modality fusion transformer for multispectral object detection[J]. arXiv:2111. 00273, 2021. |