[1] 王亮, 顾益铭, 刘世亮. 基于图神经网络和强化学习的柔性作业车间调度算法[J]. 实验室研究与探索, 2025, 44(2): 101-109.
WANG L, GU Y M, LIU S L. Flexible job shop scheduling algorithm based on graph neural network and reinforcement learning[J]. Laboratory Research and Exploration, 2025, 44(2): 101-109.
[2] 王艳红, 付威通, 张俊, 等. 基于改进近端策略优化算法的柔性作业车间调度[J]. 控制与决策, 2025, 40(6): 1883-1891.
WANG Y H, FU W T, ZHANG J, et al. Flexible job-shop scheduling based on improved proximal policy optimization algorithm[J]. Control and Decision, 2025, 40(6): 1883-1891.
[3] SAIDI-MEHRABAD M, FATTAHI P. Flexible job shop scheduling with tabu search algorithms[J]. The International Journal of Advanced Manufacturing Technology, 2007, 32: 563-570.
[4] YU T, ZHOU J, FANG J, et al. Dynamic scheduling of flexible job shop based on genetic algorithm[C]//Proceedings of the 2008 IEEE International Conference on Automation and Logistics. Piscataway: IEEE, 2008: 2014-2019.
[5] PEZZELLA F, MORGANTI G, CIASCHETTI G. A genetic algorithm for the flexible job-shop scheduling problem[J]. Computers & Operations Research, 2008, 35(10): 3202-3212.
[6] LV Z, ZHAO Y, KANG H, et al. An improved Harris hawk optimization algorithm for flexible job shop scheduling problem[J]. Computers, Materials & Continua, 2024, 78(2): 2337-2360.
[7] 付威, 纪青然, 陈录城, 等. 禁忌搜索和NSGA-Ⅱ算法融合求解多车间作业任务协同调度问题[J/OL]. 计算机工程: 1-15[2025-04-08]. https://www.ecice06.com/CN/10.19678/j.issn.1000-3428.00%2070435.
FU W, JI Q R, CHEN L C, et al. Tabu search and NSGA-Ⅱ algorithm fusion to solve the problem of multi-workshop job tasks collaboration scheduling[J/OL]. Computer Engineering:1-15[2025-04-08]. https://www.ecice06.com/CN/10.19678/j.issn.1000-3428.00%2070435.
[8] 熊丽琴, 陈希亮, 赖俊, 等. 面向关系建模的合作多智能体深度强化学习综述[J]. 计算机工程与应用, 2025, 61(18): 41-60.
XIONG L Q, CHEN X L, LAI J, et al. Survey of cooperative multi-agent deep reinforcement learning based on relational modeling[J]. Computer Engineering and Applications, 2025,61(18):41-60.
[9] ZHANG C, SONG W, CAO Z, et al. Learning to dispatch for job shop scheduling via deep reinforcement learning[J].Advances in Neural Information Processing Systems,2020,33:1621-1632.
[10] YUAN E, WANG L, CHENG S, et al. Solving flexible job shop scheduling problems via deep reinforcement learning[J]. Expert Systems with Applications, 2024, 245: 123019.
[11] REIJNEN R, ZHANG Y, BUKHSH Z, et al. Learning to adapt genetic algorithms for multi-objective flexible job shop scheduling problems[C]//Proceedings of the Companion Conference on Genetic and Evolutionary Computation. New York: ACM, 2023: 315-318.
[12] YANG D, SHU X, YU Z, et al. Dynamic flexible job shop scheduling based on deep reinforcement learning[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2024: 09544054241272855.
[13] 卢超, 肖洋, 张彪, 等. 柔性作业车间调度问题的课程强化学习算法[J]. 国防科技大学学报, 2025, 47(2): 49-59.
LU C, XIAO Y, ZHANG B, et al. Curriculum reinforcement learning algorithm for flexible job shop scheduling problem[J]. Journal of National University of Defense Technology, 2025, 47(2): 49-59.
[14] CHANG X, JIA X, REN J. A reinforcement learning enhanced memetic algorithm for multi-objective flexible job shop scheduling toward Industry 5.0[J]. International Journal of Production Research, 2025, 63(1): 119-147.
[15] 杨蓝, 毕利, 杨众. 结合图神经网络的DDQN算法的动态车间调度问题研究[J]. 计算机工程与应用, 2025, 61(12): 344-351.
YANG L, BI L, YANG Z. Research on dynamic job shop scheduling problem using DDQN algorithm combined with graph neural network[J]. Computer Engineering and Applications, 2025, 61(12): 344-351.
[16] SEITO T, MUNAKATA S. Production scheduling based on deep reinforcement learning using graph convolutional neural network[C]//Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART), 2020: 766-772.
[17] TAM P, ROS S, SONG I, et al. A survey of intelligent end-to-end networking solutions: integrating graph neural networks and deep reinforcement learning approaches[J]. Electronics, 2024, 13(5): 994.
[18] YANG Z, BI L, JIAO X. Combining reinforcement learning algorithms with graph neural networks to solve dynamic job shop scheduling problems[J]. Processes, 2023, 11(5): 1571.
[19] 李兴洲, 李艳武, 谢辉. 基于CNN的深度强化学习算法求解柔性作业车间调度问题[J]. 计算机工程与应用, 2024, 60(17): 312-320.
LI X Z, LI Y W, XIE H. Deep reinforcement learning algorithm based on CNN to solve flexible job shop scheduling problem[J]. Computer Engineering and Applications, 2024, 60(17): 312-320.
[20] TANG Y, SHEN L, HAN S. Low-carbon flexible job shop scheduling problem based on deep reinforcement learning[J]. Sustainability, 2024, 16(11): 4544.
[21] WAN L, FU L, LI C, et al. Flexible job shop scheduling via deep reinforcement learning with meta-path-based heterogeneous graph neural network[J]. Knowledge-Based Systems, 2024, 296: 111940.
[22] GAO Y, SHI S, LIU G, et al. A novel reinforcement learning approach for enhancing flexible job-shop scheduling with dual gated-attention network[C]//Proceedings of the Intelligent Conference on Intelligent Computing. Singapore: Springer, 2024: 480-492.
[23] LEI K, GUO P, ZHAO W, et al. A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem[J]. Expert Systems with Applications, 2022, 205: 117796.
[24] BRANDIMARTE P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993, 41(3): 157-183. |