[1] LIAO S L, AN J B. A robust insulator detection algorithm based on local features and spatial orders for aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 963-967.
[2] ZHAO Z B, XU G Z, QI Y C. Representation of binary feature pooling for detection of insulator strings in infrared images[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2858-2866.
[3] 方挺, 韩家明. 航拍图像中绝缘子缺陷的检测与定位[J]. 计算机科学, 2016, 43(1): 222-225.
FANG T, HAN J. Detection and localization of insulator defects in aerial images[J]. Computer Science, 2016,43 (1): 222-225.
[4] 曾光, 黄健盛, 武文星, 等. 基于机器视觉的刚性接触网绝缘子病害检测系统[J]. 自动化应用, 2024, 65(2): 151-155.
ZENG G, HUANG J S, WU W X, et al. Machine vision-based detection system for insulator defects in rigid catenary systems[J]. Automation Application, 2024, 65(2): 151-155.
[5] 刘国伟, 何锦雄, 杨永. 基于图像识别与智能算法的绝缘子故障检测方法研究[J]. 电瓷避雷器, 2021(4): 191-195.
LIU G W, HE J X, YANG Y. Insulator fault detection method based on image recognition technology and intelligent algorithm[J]. Insulators and Surge Arresters, 2021(4): 191-195.
[6] 郝帅, 马瑞泽, 赵新生, 等. 基于卷积块注意模型的YOLOv3输电线路故障检测方法[J]. 电网技术, 2021, 45(8): 2979-2987.
HAO S, MA R Z, ZHAO X S, et al. Fault detection of YOLOv3 transmission line based on convolutional block attention model[J]. Power System Technology, 2021,45 (8): 2979-2987.
[7] 齐冬莲, 韩译锋, 周自强, 等. 基于视频图像的输变电设备外部缺陷检测技术及其应用现状[J]. 电子与信息学报, 2022, 44(11): 3709-3720.
QI D L, HAN Y F, ZHOU Z Q, et al. Review of defect detection technology of power equipment based on video images[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3709-3720.
[8] 蒲天骄, 乔骥, 韩笑, 等. 人工智能技术在电力设备运维检修中的研究及应用[J]. 高电压技术, 2020, 46(2): 369-383.
PU T J, QIAO J, HAN X, et al. Research and application of artificial intelligence in operation and maintenance for power equipment[J]. High Voltage Technology, 2020, 46(2): 369-383.
[9] 魏豪, 张凯, 郑磊, 等. 基于HOG-RCNN的电力巡检红外图像目标检测[J]. 红外与激光工程, 2020, 49(2): 242-247.
WEI H, ZHANG K, ZHENG L, et al. Infrared image object detection of power inspection based on HOG-RCNN[J]. Inf-rared and Laser Engineering, 2020, 49(2): 242-247.
[10] 田子建, 吴佳奇, 张文琪, 等. 基于二阶段目标增强网络的低照度复杂环境下绝缘子故障检测方法[J]. 电网技术, 2024, 48(3): 1331-1343.
TIAN Z J, WU J Q, ZHANG W Q, et al. Insulator faults dete-ction in low illuminance complex environment based TOE-Net[J]. Power System Technology, 2024, 48(3):1331-1343.
[11] 谢静, 杜耀文, 刘志坚, 等. 基于轻量化改进型YOLOv5s的可见光绝缘子缺陷检测算法[J]. 电网技术, 2023, 47(12): 5273-5283.
XIE J, DU Y W, LIU Z J, et al. Defect detection algorithm based on lightweight and improved YOLOv5s for visible light insulators[J]. Power System Technology, 2023, 47(12): 5273-5283.
[12] 黄悦华, 刘恒冲, 陈庆, 等. 基于USRNet与改进YOLOv5x的输电线路绝缘子故障检测方法[J]. 高电压技术, 2022, 48(9): 3437-3446.
HUANG Y H, LIU H C, CHEN Q, et al. Transmission line insulator fault detection method based on USRNet and imp-roved YOLOv5x[J]. High Voltage Engineering, 2022, 48(9): 3437-3446.
[13] ZHANG D W, ZHENG Z L, LI M L, et al. CSART: channel and spatial attention-guided residual learning for real-time object tracking[J]. Neurocomputing, 2021, 436: 260-272.
[14] 张大伟, 陈佩琪, 郑忠龙, 等. 一种无人机目标跟踪方法、系统、 介质、 设备及终端: CN202211384704.4[P]. 2023-01-17.
ZHANG D W, CHEN P Q, ZHENG Z L, et al. A UAV target tracking method, system, media, equipment and terminal CN202211384704.[P]. 42023-01-17.
[15] JIN X Q, ZHANG D W, WU Q E, et al. Improved SiamCAR with ranking-based pruning and optimization for efficient UAV tracking[J].Image and Vision Computing, 2024, 141: 104886.
[16] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[17] 孙福明, 胡锡航, 武景宇, 等. 跨模态交互融合与全局感知的RGB-D显著性目标检测[J]. 软件学报, 2024, 35(4): 1899-1913.
SUN F M, HU X H, WU J Y, et al. RGB-D salient object detection based on cross-modal interactive fusion and global awareness[J]. Journal of Software, 2024, 35(4): 1899-1913.
[18] 李斌,曾筠婷,朱新山,等.基于多尺度上下文感知的绝缘子缺陷检测网络[J]. 高电压技术, 2022, 48(8): 2905-2914.
LI B, ZENG Y T, ZHU X S, et al. Detection network for insulator defects based on multi-scale context awareness[J]. High Voltage Technology, 2022, 48(8): 2905-2914.
[19] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Com-puter Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856.
[20] NARAYANAN M. SENetV2: aggregated dense layer for channelwise and global representations[J]. arXiv:2311.10807, 2023.
[21] ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatital attention and standard convolutional operation[J]. arXiv:2304.03198, 2023.
[22] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[23] CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13034-13043.
[24] LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209. 02976, 2022.
[25] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[26] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[27] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[28] ZHAO Y A, LYU W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogn-ition. Piscataway: IEEE, 2024: 16965-16974.
[29] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39(6): 1137-1149.
[30] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[31] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229. |