[1] 吴强强, 王帅, 王彪, 等. 空间信息感知语义分割模型的高分辨率遥感影像道路提取[J]. 遥感学报, 2022, 26(9): 1872-1885.
WU Q Q, WANG S, WANG B, et al. Road extraction method of high-resolution remote sensing image on the basis of the spatial information perception semantic segmentation model[J]. National Remote Sensing Bulletin, 2022, 26(9): 1872-1885.
[2] ZHAO Q, LIU J H, LI Y W, et al. Semantic segmentation with attention mechanism for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 99: 1-13.
[3] 胡宇翔, 余长宏, 高明. 多模态融合的遥感图像语义分割网络[J]. 计算机工程与应用, 2024, 60(15): 234-242.
HU Y X, YU C H, GAO M. Remote sensing image semantic segmentation network based on multimodal fusion[J]. Computer Engineering and Applications, 2024, 60(15): 234-242.
[4] 林云浩, 王艳军, 李少春, 等. 一种耦合DeepLab与Transformer的农作物种植类型遥感精细分类方法[J]. 测绘学报, 2024, 53(2): 353-366.
LIN Y H, WANG Y J, LI S C, et al. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366.
[5] GAO Y, ZHANG S, ZUO D, et al. TMNet: a two-branch multi-scale semantic segmentation network for remote sensing images[J]. Sensors (Basel), 2023, 23(13): 5909.
[6] 董张玉, 李金徽, 张晋, 等. 边缘增强的BECU-Net模型高分辨率遥感影像耕地提取[J]. 遥感学报, 2023, 27(12): 2847-2859.
DONG Z Y, LI J H, ZHANG J, et al. Cultivated land extra-ction from high-resolution remote sensing images based on BECU-Net model with edge enhancement[J]. National Remote Sensing Bulletin, 2023, 27(12): 2847-2859.
[7] 何佳佳, 徐杨, 张永丹. 改进U-net++的遥感图像语义分割方法[J]. 计算机工程与应用, 2024, 60(13): 255-265.
HE J J, XU Y, ZHANG Y D. Improved U-net++ semantic segmentation method for remote sensing images[J]. Computer Engineering and Applications, 2024, 60(13): 255-265.
[8] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recogn-ition. Piscataway: IEEE, 2015: 3431-3440.
[9] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
[10] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[11] YANG M Y, KUMAAR S, LYU Y, et al. Real-time semantic segmentation with context aggregation network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 124-134.
[12] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239.
[13] DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
[14] MA A L, WANG J J, ZHONG Y F, et al. FactSeg: foreground activation-driven small object semantic segment-ation in large-scale remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16.
[15] LI R, ZHENG S Y, ZHANG C, et al. ABCNet: attentive bilateral contextual network for efficient semantic segmentation of Fine-Resolution remotely sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181: 84-98.
[16] HOU J L, GUO Z, WU Y M, et al. BSNet: dynamic hybrid gradient convolution based boundary-sensitive network for remote sensing image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-22.
[17] HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2023, 45(1): 87-110.
[18] STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: transformer for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 7242-7252.
[19] CHEN J, XIA M, WANG D H, et al. Double branch parallel network for segmentation of buildings and waters in remote sensing images[J]. Remote Sensing, 2023, 15(6): 1536.
[20] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
[21] ZHANG Q, YANG Y B. Rest: an efficient transformer for visual recognition[J]. Advances in Neural Information Processing Systems, 2021, 34: 15475-15485.
[22] DONG X Y, BAO J M, CHEN D D, et al. CSWin transformer: a general vision transformer backbone with cross-shaped windows[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12114-12124.
[23] ZHANG G, LEI T, CUI Y, et al. A dual-path and lightweight convolutional neural network for high-resolution aerial image segmentation[J]. ISPRS International Journal of Geo-Information, 2019, 8(12): 582.
[24] JIANG S, LI J J, HUA Z. DPCFN: dual path cross fusion network for medical image segmentation[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105420.
[25] HE X, ZHOU Y, ZHAO J Q, et al. Swin transformer embedding UNet for remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2022, 60: 1-15.
[26] CHEN Y H, LIU P Y, ZHAO J C, et al. Shallow-guided transformer for semantic segmentation of hyperspectral remote sensing imagery[J]. Remote Sensing, 2023, 15(13): 3366.
[27] WENG L G, PANG K, XIA M, et al. Sgformer: a local and global features coupling network for semantic segmentation of land cover[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 6812-6824.
[28] GENG J, SONG S, JIANG W. Dual-path feature aware network for remote sensing image semantic segmentation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(5): 3674-3686.
[29] HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[30] ROTTENSTEINER F, SOHN G, GERKE M, et al. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 256-271. |