计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 295-305.DOI: 10.3778/j.issn.1002-8331.2409-0070

• 图形图像处理 • 上一篇    下一篇

融合动态权重与语义筛选的双分支遥感图像语义分割

房梁,谢刚,续欣莹,曲铁座,谢新林   

  1. 1.太原科技大学 电子信息工程学院,太原 030024 
    2.先进控制与装备智能化山西省重点实验室,太原 030024
    3.太原理工大学 电气与动力工程学院,太原 030024
  • 出版日期:2025-10-15 发布日期:2025-10-15

Dual-Branch Network for Remote Sensing Image Semantic Segmentation with Dynamic Weights and Semantic Filtering

FANG Liang, XIE Gang, XU Xinying, QU Tiezuo, XIE Xinlin   

  1. 1.School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
    2.Shanxi Provincial Key Laboratory of Advanced Control and Equipment Intelligentization, Taiyuan 030024, China
    3.College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Online:2025-10-15 Published:2025-10-15

摘要: 针对遥感图像语义分割中存在的类内特征异质性导致错误分类和大目标分割碎片化的问题,提出一种融合动态权重与语义筛选的双分支遥感图像语义分割网络,所构建网络能够以逐层交互的方式建模Transformer和CNN的全局局部信息。构建基于动态权重调节机制的动态感知融合模块,通过聚合双分支的全局局部建模优势,缓解目标类内特征不一致导致的错误分类问题。提出语义筛选注意力用于交叉特征筛选模块,挖掘重要语义信息的同时过滤无效特征,以增强模型对大目标的连续分割能力。设计浅层空间-语义信息耦合模块,通过双路耦合注意力结构,缩小跳跃连接中深层语义信息和浅层空间细节之间的特征差异。此外,构建山西太原城区高分辨率卫星遥感数据集,并进行了九类地物目标的分割实验。在自建数据集和公开数据集ISPRS上的实验结果表明,所提算法能够在缓解同类型目标错误分类问题的同时增强对大目标的连续分割能力。

关键词: 语义分割, 深度学习, Transformer, 注意力机制, 遥感图像

Abstract: A dual-branch semantic segmentation network for remote sensing imagery is proposed to address the issues of fragmentation in large target segmentation and misclassification caused by intra-class feature heterogeneity. The network merges global and local modeling capabilities of Transformers and CNN through layer-by-layer interaction. Initially, a dynamic perception fusion module based on a dynamic weight adjustment mechanism is constructed. This module aggregates the advantages of global and local modeling from both branches, alleviating misclassification issues caused by inconsistencies in target class features. Subsequently, a semantic filtering attention mechanism is introduced in the cross-feature selection module. This mechanism enhances the model’s capability for continuous segmentation of large targets by mining important semantic information and filtering out ineffective features. Lastly, a shallow space-semantic information coupling module is designed, featuring a dual-path coupling attention structure that reduces the disparity between deep semantic information and shallow spatial details in skip connections. Furthermore, a high-resolution satellite remote sensing dataset of the Taiyuan urban area in Shanxi is constructed, and segmentation experiments on nine types of ground objects are conducted. The proposed algorithm outperforms comparative algorithms in experiments conducted on the custom dataset and the public ISPRS dataset, effectively enhancing continuous segmentation capabilities for large targets while mitigating misclassification issues within the same type of targets.

Key words: semantic segmentation, deep learning, Transformer, attention mechanisms, remote sensing images