计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 179-189.DOI: 10.3778/j.issn.1002-8331.2409-0219

• 图形图像处理 • 上一篇    下一篇

基于等级残差与双向特征融合机制的检测算法

冷强奎,卢建旭,孟祥福   

  1. 辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
  • 出版日期:2025-10-01 发布日期:2025-09-30

Detection Algorithm Based on Hierarchical Residuals and Bidirectional Feature Fusion Mechanism

LENG Qiangkui, LU Jianxu, MENG Xiangfu   

  1. School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • Online:2025-10-01 Published:2025-09-30

摘要: 现有的YOLO系列目标检测算法虽然在速度和实时性方面表现出色,但在处理多尺度目标和保持边界细节方面仍有不足。为解决上述问题,提出了一种基于YOLOv8改进的目标检测算法Res-YOLO。Res-YOLO包含三个核心模块:特征增强模块Res-SPPF、双向特征融合模块RSBA和动态特征选择模块C2f_ODC。其中,Res-SPPF利用等级制残差连接和多头注意力机制来增强模型的多尺度特征表达能力;RSBA采取自适应深浅层特征融合机制来保留边界细节和语义信息;C2f_ODC通过渐进式学习以逐步过滤非必要特征,从而降低模型复杂度。此外,引入线性可变卷积LDConv来处理具有复杂边界和不规则形状的目标。在MS COCO2017数据集上的实验结果表明,相比于原始算法,Res-YOLO在mAP指标上提升2.9个百分点,而GFLOPs为原始算法的94%。与其他先进检测算法的对比实验结果也证实了Res-YOLO的有效性和竞争力。

关键词: 目标检测, 残差连接, 多尺度特征融合, 卷积神经网络, 注意力机制

Abstract: Although the existing YOLO series of object detection algorithms demonstrate excellent speed and real-time performance, they still have shortcomings in handling multi-scale objects and preserving boundary details. To address these issues, an improved object detection algorithm based on YOLOv8, named Res-YOLO, is proposed. Res-YOLO consists of three core modules: the Res-SPPF for feature enhancement, the RSBA for bidirectional feature fusion, and the C2f_ODC for dynamic feature selection. Specifically, the Res-SPPF utilizes hierarchical residual connections and a multi-head attention mechanism to enhance the model’s multi-scale feature representation capability; the RSBA employs an adaptive deep-shallow level feature fusion mechanism to retain boundary details and semantic information; the C2f_ODC filters unnecessary features progressively through incremental learning, thereby reducing model complexity. Additionally, a linear deformable convolution (LDConv) is introduced to handle objects with complex boundaries and irregular shapes. Experimental results on the MS COCO 2017 dataset show that Res-YOLO achieves a 2.9 percentage points improvement in mAP over the original algorithm, while GFLOPs being 94% of the original algorithm. Comparative experiments with other state-of-the-art detection algorithms further validate the effectiveness and competitiveness of Res-YOLO.

Key words: object detection, residual connection, multi-scale feature fusion, convolutional neural networks, attention mechanism