
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 78-99.DOI: 10.3778/j.issn.1002-8331.2408-0086
万季玲,曹利峰,白金龙,李金辉,杜学绘
出版日期:2025-07-01
发布日期:2025-06-30
WAN Jiling, CAO Lifeng, BAI Jinlong, LI Jinhui, DU Xuehui
Online:2025-07-01
Published:2025-06-30
摘要: 区块链技术具有去中心化、不可篡改等特性,虽然增强了系统的可信性和可靠性,但是也给区块链日益复杂的应用平台带来了诸多的异常问题。为了确保区块链系统的平稳运行,对区块链上恶意攻击、非法活动等异常行为的检测是至关重要的。系统地梳理了区块链应用层、合约层、网络层及共识层面临的安全风险及其异常检测工作,并进一步针对将不同异常问题的检测方法根据特征提取形式进行总结分类,从规则分析、机器学习、表示学习和深度学习的角度进行了分析。最后,对区块链异常检测领域现存的问题提出了未来研究方向。
万季玲, 曹利峰, 白金龙, 李金辉, 杜学绘. 面向区块链网络的异常检测方法综述[J]. 计算机工程与应用, 2025, 61(13): 78-99.
WAN Jiling, CAO Lifeng, BAI Jinlong, LI Jinhui, DU Xuehui. Survey of Anomaly Detection Methods for Blockchain Networks[J]. Computer Engineering and Applications, 2025, 61(13): 78-99.
| [1] SZALACHOWSKI P, REIJSBERGEN D, HOMOLIAK I, et al. StrongChain: transparent and collaborative proof-of-work consensus[C]//Proceedings of the 28th USENIX Security Symposium. Santa Clara, CA: USENIX Association, 2019: 819-836. [2] YU H F, NIKOLIC I, HOU R M, et al. OHIE: blockchain scaling made simple[C]//Proceedings of the 2020 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2020: 90-105. [3] LIU Z T, XIANG Y X, SHI J, et al. HyperService: interoperability and programmability across heterogeneous blockchains[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 549-566. [4] BISSIAS G, LEVINE B N. Bobtail: improved blockchain security with low-variance mining[C]//Proceedings 2020 Network and Distributed System Security Symposium, 2020. [5] LI X Q, JIANG P, CHEN T, et al. A survey on the security of blockchain systems[J]. Future Generation Computer Systems, 2020, 107: 841-853. [6] M?SER M, B?HME R, BREUKER D. An inquiry into money laundering tools in the Bitcoin ecosystem[C]//Proceedings of the 2013 APWG eCrime Researchers Summit. Piscataway: IEEE, 2013: 1-14. [7] BISTARELLI S, SANTINI F. Go with the-bitcoin-flow, with visual analytics[C]//Proceedings of the 12th International Conference on Availability, Reliability and Security. New York: ACM, 2017: 1-6. [8] ARAUJO F, FARINHA J, DOMINGUES P, et al. A maximum independent set approach for collusion detection in voting pools[J]. Journal of Parallel and Distributed Computing, 2011, 71(10): 1356-1366. [9] HEILMAN E, KENDLER A, ZOHAR A, et al. Eclipse attacks on bitcoin’s peer-to-peer network[C]//Proceedings of the 24th USENIX Conference on Security Symposium. Washington, DC: USENIX Association, 2015: 129-144. [10] 秦璐, 李易, 林仙铖, 等. 基于机器学习的比特币实体分类方法研究综述[J]. 海南师范大学学报(自然科学版), 2023, 36(1): 38-45. QIN L, LI Y, LIN X C, et al. A review of research on machine learning based Bitcoin entity classification methods[J]. Journal of Hainan Normal University (Natural Science), 2023, 36(1): 38-45. [11] 蔡召, 荆涛, 任爽. 以太坊钓鱼诈骗检测技术综述[J]. 网络与信息安全学报, 2023, 9(2): 21-32. CAI Z, JING T, REN S. Survey on Ethereum phishing detection technology[J]. Chinese Journal of Network and Information Security, 2023, 9(2): 21-32. [12] 闫凯伦, 刁文瑞, 郭山清. 智能合约安全漏洞及检测技术综述[J]. 信息对抗技术, 2023(3): 1-17. YAN K L, DIAO W R, GUO S Q. A survey of smart contract vulnerabilities and detection techniques[J]. Information Countermeasure Technology, 2023(3): 1-17. [13] 张小松, 牛伟纳, 黄世平, 等. 基于深度学习的智能合约漏洞检测方法综述[J]. 四川大学学报(自然科学版), 2023, 60(2): 7-18. ZHANG X S, NIU W N, HUANG S P, et al. A survey of smart contract vulnerability detection methods based on deep learning[J]. Journal of Sichuan University (Natural Science Edition), 2023, 60(2): 7-18. [14] LI J, GU C X, WEI F S, et al. A survey on blockchain anomaly detection using data mining techniques[C]//Proceedings of the 1st International Conference on Blockchain and Trustworthy Systems. Singapore: Springer, 2019: 491-504. [15] 孙国梓, 李芝, 肖荣宇, 等. 区块链交易安全问题研究[J]. 南京邮电大学学报(自然科学版), 2021, 41(2): 36-48. SUN G Z, LI Z, XIAO R Y, et al. Research on blockchain transaction security[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2021, 41(2): 36-48. [16] HASSAN M U, REHMANI M H, CHEN J J. Anomaly detection in blockchain networks: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 289-318. [17] PINNA A, TONELLI R, ORRú M, et al. A Petri nets model for blockchain analysis[J]. The Computer Journal, 2018, 61(9): 1374-1388. [18] HARRIGAN M, FRETTER C. The unreasonable effectiveness of address clustering[C]//Proceedings of the 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress. Piscataway: IEEE, 2016: 368-373. [19] ANDROULAKI E, KARAME G O, ROESCHLIN M, et al. Evaluating user privacy in Bitcoin[C]//Proceedings of the Financial Cryptography and Data Security. Berlin, Heidelberg: Springer, 2013: 34-51. [20] ATHEY S, PARASHKEVOV I, SARUKKAI V, et al. Bitcoin pricing, adoption, and usage: theory and evidence[Z]. Stanford Graduate School of Business, 2006. [21] 毛洪亮, 吴震, 贺敏, 等. 基于启发式的比特币地址聚类方法[J]. 北京邮电大学学报, 2018, 41(2): 27-31. MAO H L, WU Z, HE M, et al. Heuristic approaches based clustering of Bitcoin addresses[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(2): 27-31. [22] FARRUGIA S, ELLUL J, AZZOPARDI G. Detection of illicit accounts over the Ethereum blockchain[J]. Expert Systems with Applications, 2020, 150: 113318. [23] IBRAHIM R F, MOHAMMAD ELIAN A, ABABNEH M. Illicit account detection in the Ethereum blockchain using machine learning[C]//Proceedings of the 2021 International Conference on Information Technology. Piscataway: IEEE, 2021: 488-493. [24] KUMAR N, SINGH A, HANDA A, et al. Detecting malicious accounts on the Ethereum blockchain with supervised learning[C]//Proceedings of the 4th International Symposium on Cyber Security Cryptography and Machine Learning. Cham: Springer, 2020: 94-109. [25] POURSAFAEI F, HAMAD G B, ZILIC Z. Detecting malicious Ethereum entities via application of machine learning classification[C]//Proceedings of the 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services. Piscataway: IEEE, 2020: 120-127. [26] JOURDAN M, BLANDIN S, WYNTER L, et al. Characterizing entities in the Bitcoin blockchain[C]//Proceedings of the 2018 IEEE International Conference on Data Mining Workshops. Piscataway: IEEE, 2018: 55-62. [27] CHEN W L, GUO X F, CHEN Z G, et al. Phishing scam detection on Ethereum: towards financial security for blockchain ecosystem[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 4506-4512. [28] TOYODA K, OHTSUKI T, MATHIOPOULOS P T. Multi-class Bitcoin-enabled service identification based on transaction history summarization[C]//Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data. Piscataway: IEEE, 2018: 1153-1160. [29] 边玲玉, 张琳琳, 赵楷, 等. 基于LightGBM的以太坊恶意账户检测方法[J]. 信息网络安全, 2020, 20(4): 73-80. BIAN L Y, ZHANG L L, ZHAO K, et al. Ethereum malicious account detection method based on LightGBM[J]. Netinfo Security, 2020, 20(4): 73-80. [30] YUAN Q, HUANG B Y, ZHANG J, et al. Detecting phishing scams on Ethereum based on transaction records[C]//Proceedings of the 2020 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2020: 1-5. [31] YUAN Z H, YUAN Q, WU J J. Phishing detection on Ethereum via learning representation of transaction subgraphs[C]//Proceedings of the 2nd International Conference on Blockchain and Trustworthy Systems. Singapore: Springer, 2020: 178-191. [32] XIA Y J, LIU J L, WU J J. Phishing detection on Ethereum via attributed ego-graph embedding[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(5): 2538-2542. [33] POURSAFAEI F, RABBANY R, ZILIC Z. SigTran: signature vectors for detecting illicit activities in blockchain transaction networks[C]//Advances in Knowledge Discovery and Data Mining. Cham: Springer, 2021: 27-39. [34] WU J J, YUAN Q, LIN D, et al. Who are the phishers?phishing scam detection on Ethereum via network embedding[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 1156-1166. [35] LIN D, WU J J, YUAN Q, et al. T-EDGE: temporal weighted multidigraph embedding for Ethereum transaction network analysis[J]. Frontiers in Physics, 2020, 8: 204. [36] WANG J H, CHEN P T, YU S Q, et al. TSGN: transaction subgraph networks for identifying Ethereum phishing accounts[C]//Proceedings of the 3rd International Conference on Blockchain and Trustworthy Systems. Singapore: Springer, 2021: 187-200. [37] CHEN L, PENG J Y, LIU Y, et al. Phishing scams detection in Ethereum transaction network[J]. ACM Transactions on Internet Technology, 2021, 21(1): 1-16. [38] LI S J, GOU G P, LIU C, et al. TTAGN: temporal transaction aggregation graph network for Ethereum phishing scams detection[C]//Proceedings of the 2022 ACM Web Conference. New York: ACM, 2022: 661-669. [39] WANG L, XU M, CHENG H. Phishing scams detection via temporal graph attention network in Ethereum[J]. Information Processing & Management, 2023, 60(4): 103412. [40] 石拓, 梁飞, 尚钢川, 等. 基于时序交易图注意力神经网络的以太坊恶意账户检测[J]. 信息网络安全, 2022, 22(10): 69-75. SHI T, LIANG F, SHANG G C, et al. Detection of malicious Ethereum account based on time series transaction and graph attention neural network[J]. Netinfo Security, 2022, 22(10): 69-75. [41] ZHANG D J, CHEN J Y, LU X S. Blockchain phishing scam detection via multi-channel graph classification[C]//Proceedings of the 3rd International Conference on Blockchain and Trustworthy Systems. Singapore: Springer, 2021: 241-256. [42] LI P P, XIE Y Y, XU X Y, et al. Phishing fraud detection on Ethereum using graph neural network[C]//Proceedings of the 4th International Conference on Blockchain and Trustworthy Systems. Singapore: Springer Nature Singapore, 2022: 362-375. [43] AWAN M K, CORTESI A. Blockchain transaction analysis using dominant sets[C]//Proceedings of the 16th IFIP TC8 International Conference on Computer Information Systems and Industrial Management. Cham: Springer, 2017: 229-239. [44] HUANG B T, LIU Z G, CHEN J H, et al. Behavior pattern clustering in blockchain networks[J]. Multimedia Tools and Applications, 2017, 76(19): 20099-20110. [45] EPISHKINA A, ZAPECHNIKOV S. Discovering and clustering hidden time patterns in blockchain ledger[M]//Biologically inspired cognitive architectures (BICA) for young scientists. Cham: Springer, 2018: 245-250. [46] TOYODA K, OHTSUKI T, MATHIOPOULOS P T. Identification of high yielding investment programs in Bitcoin via transactions pattern analysis[C]//Proceedings of the 2017 IEEE Global Communications Conference. Piscataway: IEEE, 2017: 1-6. [47] TOYODA K, OHTSUKI T, MATHIOPOULOS P T. Time series analysis for Bitcoin transactions: the case of Pirate@40’s HYIP scheme[C]//Proceedings of the 2018 IEEE International Conference on Data Mining Workshops. Piscataway: IEEE, 2018: 151-155. [48] MONAMO P M, MARIVATE V, TWALA B. A multifaceted approach to Bitcoin fraud detection: global and local outliers[C]//Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2016: 188-194. [49] BARTOLETTI M, PES B, SERUSI S. Data mining for detecting Bitcoin ponzi schemes[C]//Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology. Piscataway: IEEE, 2018: 75-84. [50] WU J J, LIU J L, CHEN W L, et al. Detecting mixing services via mining Bitcoin transaction network with hybrid motifs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2237-2249. [51] PODGORELEC B, TURKANOVI? M, KARAKATI? S. A machine learning-based method for automated blockchain transaction signing including personalized anomaly detection[J]. Sensors, 2019, 20(1): 147. [52] SUN X W, YANG T, HU B. LSTM-TC: Bitcoin coin mixing detection method with a high recall[J]. Applied Intelligence, 2022, 52(1): 780-793. [53] TANG H Y, JIAO Y Y, HUANG B T, et al. Learning to classify blockchain peers according to their behavior sequences[J]. IEEE Access, 2018, 6: 71208-71215. [54] 林伟. 基于多特征融合的区块链异常交易检测[J]. 信息网络安全, 2022, 22(10): 24-30. LIN W. Detection of abnormal transactions in blockchain based on multi feature fusion[J]. Netinfo Security, 2022, 22(10): 24-30. [55] WEBER M, DOMENICONI G, CHEN J, et al. Anti-money laundering in Bitcoin: experimenting with graph convolutional networks for financial forensics[J]. arXiv:1908.02591, 2019. [56] 郑海潇, 文斌. 基于图卷积网络的比特币非法交易识别方法[J]. 信息网络安全, 2021, 21(9): 74-79. ZHENG H X, WEN B. Bitcoin illegal transaction identification method based on graph convolutional network[J]. Netinfo Security, 2021, 21(9): 74-79. [57] ALARAB I, PRAKOONWIT S, NACER M I. Competence of graph convolutional networks for anti-money laundering in Bitcoin blockchain[C]//Proceedings of the 2020 5th International Conference on Machine Learning Technologies. New York: ACM, 2020: 23-27. [58] 朱会娟, 陈锦富, 李致远, 等. 基于多特征自适应融合的区块链异常交易检测方法[J]. 通信学报, 2021, 42(5): 41-50. ZHU H J, CHEN J F, LI Z Y, et al. Block-chain abnormal transaction detection method based on adaptive multi-feature fusion[J]. Journal on Communications, 2021, 42(5): 41-50. [59] CHANG J L, GAO B, XIAO H, et al. sCompile: critical path identification and analysis for smart contracts[M]//Formal methods and software engineering. Cham: Springer, 2019: 286-304. [60] KRUPP J, ROSSOW C, KRUPP J, et al. TEETHER[C]//Proceedings of the 27th USENIX Conference on Security Symposium. New York: ACM, 2018: 1317-1333. [61] TSANKOV P, DAN A, DRACHSLER-COHEN D, et al. Securify: practical security analysis of smart contracts[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 67-82. [62] KALRA S, GOEL S, DHAWAN M, et al. ZEUS: analyzing safety of smart contracts[C]//Proceedings of the 2018 Network and Distributed System Security Symposium, 2018. [63] LIU C, LIU H, CAO Z, et al. ReGuard: finding reentrancy bugs in smart contracts[C]//Proceedings of the 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion. Piscataway: IEEE, 2018: 65-68. [64] JIANG B, LIU Y, CHAN W K. ContractFuzzer: fuzzing smart contracts for vulnerability detection[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. New York: ACM, 2018: 259-269. [65] GAO J B, LIU H, LIU C, et al. EASYFLOW: keep Ethereum away from overflow[C]//Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings. Piscataway: IEEE, 2019: 23-26. [66] TIKHOMIROV S, VOSKRESENSKAYA E, IVANITSKIY I, et al. SmartCheck: static analysis of Ethereum smart contracts[C]//Proceedings of the 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2018: 9-16. [67] FEIST J, GRIECO G, GROCE A. Slither: a static analysis framework for smart contracts[C]//Proceedings of the 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2019: 8-15. [68] TANN W J, HAN X J, GUPTA S S, et al. Towards safer smart contracts: a sequence learning approach to detecting security threats[J]. arXiv:1811.06632, 2018. [69] HUANG J, ZHOU K, XIONG A, et al. Smart contract vulnerability detection model based on multi-task learning[J]. Sensors, 2022, 22(5): 1829. [70] ASHIZAWA N, YANAI N, CRUZ J P, et al. Eth2Vec: learning contract-wide code representations for vulnerability detection on Ethereum smart contracts[J]. Blockchain: Research and Applications, 2022, 3(4): 100101. [71] ZHANG L J, CHEN W J, WANG W Z, et al. CBGRU: a detection method of smart contract vulnerability based on a hybrid model[J]. Sensors, 2022, 22(9): 3577. [72] LUTZ O, CHEN H L, FEREIDOONI H, et al. ESCORT: Ethereum smart contracts vulnerability detection using deep neural network and transfer learning[J]. arXiv:2103.12607, 2021. [73] GOGINENI A K, SWAYAMJYOTI S, SAHOO D, et al. Multi-class classification of vulnerabilities in smart contracts using AWD-LSTM, with pre-trained encoder inspired from natural language processing[J]. IOP SciNotes, 2020, 1(3): 035002. [74] ZHUANG Y, LIU Z G, QIAN P, et al. Smart contract vulnerability detection using graph neural network[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 3283-3290. [75] LIU Z G, QIAN P, WANG X Y, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1296-1310. [76] LIU Z G, QIAN P, WANG X, et al. Smart contract vulnerability detection: from pure neural network to interpretable graph feature and expert pattern fusion[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021: 2751-2759. [77] WU H J, ZHANG Z, WANG S W, et al. Peculiar: smart contract vulnerability detection based on crucial data flow graph and pre-training techniques[C]//Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2021: 378-389. [78] MI F, WANG Z Y, ZHAO C, et al. VSCL: automating vulnerability detection in smart contracts with deep learning[C]//Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2021: 1-9. [79] FAN Y Q, SHANG S Y, DING X. Smart contract vulnerabi- lity detection based on dual attention graph convolutional network[C]//Proceedings of the 17th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing. Cham: Springer, 2021: 335-351. [80] ZENG Q R, HE J H, ZHAO G S, et al. EtherGIS: a vulnerability detection framework for Ethereum smart contracts based on graph learning features[C]//Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference. Piscataway: IEEE, 2022: 1742-1749. [81] HUANG J J, HAN S M, YOU W, et al. Hunting vulnerable smart contracts via graph embedding based bytecode matching[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2144-2156. [82] YU X X, ZHAO H Y, HOU B T, et al. DeeSCVHunter: a deep learning-based framework for smart contract vulnerability detection[C]//Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-8. [83] XING C P, CHEN Z R, CHEN L X, et al. A new scheme of vulnerability analysis in smart contract with machine learning[J]. Wireless Networks, 2024, 30(7): 6325-6334. [84] VASEK M, MOORE T. Analyzing the Bitcoin Ponzi scheme ecosystem[M]//Financial cryptography and data security. Berlin, Heidelberg: Springer, 2019: 101-112. [85] BARTOLETTI M, CARTA S, CIMOLI T, et al. Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact[J]. Future Generation Computer Systems, 2020, 102: 259-277. [86] CHEN W M, LI X R, SUI Y T, et al. SADPonzi: detecting and characterizing Ponzi schemes in Ethereum smart contracts[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2021, 5(2): 1-30. [87] TORRES C F, STEICHEN M, STATE R. The art of the scam: demystifying honeypots in Ethereum smart contracts[C]//Proceedings of the 28th USENIX Conference on Security Symposium, 2019: 1591-1607. [88] HU T, LIU X L, CHEN T, et al. Transaction-based classification and detection approach for Ethereum smart contract[J]. Information Processing & Management, 2021, 58(2): 102462. [89] CAMINO R, TORRES C F, BADEN M, et al. A data science approach for detecting honeypots in Ethereum[C]//Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2020: 1-9. [90] WANG L, CHENG H, ZHENG Z B, et al. Ponzi scheme detection via oversampling-based long short-term memory for smart contracts[J]. Knowledge-Based Systems, 2021, 228: 107312. [91] CHEN W L, ZHENG Z B, NGAI E C H, et al. Exploiting blockchain data to detect smart Ponzi schemes on Ethereum[J]. IEEE Access, 2019, 7: 37575-37586. [92] CHEN W L, ZHENG Z B, CUI J H, et al. Detecting ponzi schemes on Ethereum: towards healthier blockchain technology[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web. New York: ACM, 2018: 1409-1418. [93] CHEN W L, GUO X F, CHEN Z G, et al. Honeypot contract risk warning on Ethereum smart contracts[C]//Proceedings of the 2020 IEEE International Conference on Joint Cloud Computing. Piscataway: IEEE, 2020: 1-8. [94] FAN S H, FU S J, XU H R, et al. Expose your mask: smart Ponzi schemes detection on blockchain[C]//Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-7. [95] ZHENG Z B, CHEN W L, ZHONG Z J, et al. Securing the Ethereum from smart Ponzi schemes: identification using static features[J]. ACM Transactions on Software Engineering and Methodology, 2023, 32(5): 1-28. [96] 张红霞, 王琪, 王登岳, 等. 基于深度学习的区块链蜜罐陷阱合约检测[J]. 通信学报, 2022, 43(1): 194-202. ZHANG H X, WANG Q, WANG D Y, et al. Honeypot contract detection of blockchain based on deep learning[J]. Journal on Communications, 2022, 43(1): 194-202. [97] HU H W, BAI Q L, XU Y D. SCSGuard: deep scam detection for Ethereum smart contracts[C]//Proceedings of the IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2022: 1-6. [98] YU S Q, JIN J, XIE Y Y, et al. Ponzi scheme detection in Ethereum transaction network[C]//Proceedings of the 3rd International Conference on Blockchain and Trustworthy Systems. Singapore: Springer, 2021: 175-186. [99] JAMADER A R, DAS P, ACHARYA B R. BcIoT: blockchain based DDos prevention architecture for IoT[C]//Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems. Piscataway: IEEE, 2019: 377-382. [100] RüTH J, ZIMMERMANN T, WOLSING K, et al. Digging into browser-based crypto mining[C]//Proceedings of the Internet Measurement Conference 2018. New York: ACM, 2018: 70-76. [101] EISENBARTH J P, CHOLEZ T, PERRIN O. Ethereum’s peer-to-peer network monitoring and sybil attack prevention[J]. Journal of Network and Systems Management, 2022, 30(4): 65. [102] SWATHI P, MODI C, PATEL D. Preventing sybil attack in blockchain using distributed behavior monitoring of miners[C]//Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies. Piscataway: IEEE, 2019: 1-6. [103] IDé T. Collaborative anomaly detection on blockchain from noisy sensor data[C]//Proceedings of the 2018 IEEE International Conference on Data Mining Workshops. Piscataway: IEEE, 2018: 120-127. [104] ESSAID M, KIM D, MAENG S H, et al. A collaborative DDoS mitigation solution based on Ethereum smart contract and RNN-LSTM[C]//Proceedings of the 2019 20th Asia-Pacific Network Operations and Management Symposium. Piscataway: IEEE, 2019: 1-6. [105] MIRKIN M, JI Y, PANG J, et al. BDoS: blockchain denial-of-service[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 601-619. [106] IQBAL M, MATULEVI?IUS R. Exploring sybil and double-spending risks in blockchain systems[J]. IEEE Access, 2021, 9: 76153-76177. [107] KIM S K, MA Z N, MURALI S, et al. Measuring Ethereum network peers[C]//Proceedings of the Internet Measurement Conference 2018. New York: ACM, 2018: 91-104. [108] ZHENG H F, TRAN T, ARDEN O. Total eclipse of the enclave: detecting eclipse attacks from inside TEEs[C]//Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2021: 1-5. [109] HU X Y, ZHU C, TONG Z Q, et al. Identifying Ethereum traffic based on an active node library and DEVp2p features[J]. Future Generation Computer Systems, 2022, 132: 162-177. [110] XU G Q, GUO B J, SU C H, et al. Am I eclipsed?A smart detector of eclipse attacks for Ethereum[J]. Computers & Security, 2020, 88: 101604. [111] KIM J, NAKASHIMA M, FAN W J, et al. Anomaly detection based on traffic monitoring for secure blockchain networking[C]//Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2021: 1-9. [112] BHUMICHAI D, BENTON R. Feature extraction of network traffic in Ethereum blockchain network layer for eclipse attack detection[C]//Proceedings of the SoutheastCon 2023. Piscataway: IEEE, 2023: 869-876. [113] BHUMICHAI D, BENTON R. Detection of Ethereum eclipse attack based on hybrid method and dynamic weighted entropy[C]//Proceedings of the SoutheastCon 2023. Piscataway: IEEE, 2023: 779-786. [114] ALANGOT B, REIJSBERGEN D, VENUGOPALAN S, et al. Decentralized and lightweight approach to detect eclipse attacks on proof of work blockchains[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1659-1672. [115] JIA B, LIANG Y Q. Anti-D chain: a lightweight DDoS attack detection scheme based on heterogeneous ensemble learning in blockchain[J]. China Communications, 2020, 17(9): 11-24. [116] EDUARDO A SOUSA J, OLIVEIRA V C, ALMEIDA VALADARES J, et al. Fighting under-price DoS attack in Ethereum with machine learning techniques[J]. ACM SIGMETRICS Performance Evaluation Review, 2021, 48(4): 24-27. [117] BAEK U J, JI S H, PARK J T, et al. DDoS attack detection on Bitcoin ecosystem using deep-learning[C]//Proceedings of the 2019 20th Asia-Pacific Network Operations and Management Symposium. Piscataway: IEEE, 2019: 1-4. [118] ZHOU Q H, DANG X L, HUO D D, et al. LogBlock: an anomaly detection method on permissioned blockchain based on log-block sequence[C]//Proceedings of the 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles. Piscataway: IEEE, 2022: 1008-1015. [119] SAAD M, THAI M T, MOHAISEN A. POSTER: deterring DDoS attacks on blockchain-based cryptocurrencies through mempool optimization[C]//Proceedings of the 2018 on Asia Conference on Computer and Communications Security. New York: ACM, 2018: 809-811. [120] DAI Q Y, ZHANG B, DONG S Q. A DDoS-attack detection method oriented to the blockchain network layer[J]. Security and Communication Networks, 2022, 2022(1): 5692820. [121] ZHOU Q H, RUAN Q Y, HUO D D, et al. The malicious resource consumption detection in permissioned blockchain based on traffic analysis[C]//Proceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2023: 510-515. [122] DAI Q Y, ZHANG B, DONG S Q. Eclipse attack detection for blockchain network layer based on deep feature extraction[J]. Wireless Communications and Mobile Computing, 2022, 2022(1): 1451813. [123] CHICARINO V, ALBUQUERQUE C, JESUS E, et al. On the detection of selfish mining and stalker attacks in blockchain networks[J]. Annals of Telecommunications, 2020, 75(3): 143-152. [124] K?DZIORA M, KOZ?OWSKI P, SZCZEPANIK M, et al. Analysis of blockchain selfish mining attacks[C]//Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology. Cham: Springer, 2020: 231-240. [125] BAI Q L, ZHOU X Y, WANG X, et al. A deep dive into blockchain selfish mining[C]//Proceedings of the 2019 IEEE International Conference on Communications. Piscataway: IEEE, 2019: 1-6. [126] ZHANG S Q, ZHANG K W, KEMME B. A simulation-based analysis of multiplayer selfish mining[C]//Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency. Piscataway: IEEE, 2020: 1-5. [127] LIU H Q, RUAN N, DU R T, et al. On the strategy and behavior of Bitcoin mining with N-attackers[C]//Proceedings of the 2018 on Asia Conference on Computer and Communications Security. New York: ACM, 2018: 357-368. [128] XIAO Y, ZHANG N, LOU W J, et al. Modeling the impact of network connectivity on consensus security of proof-of-work blockchain[C]//Proceedings of the 2020 IEEE Conference on Computer Communications. Piscataway: IEEE, 2020: 1648-1657. [129] 付晓东, 漆鑫鑫, 刘骊, 等. 基于权力指数的DPoS共谋攻击检测与预防[J]. 通信学报, 2022, 43(12): 123-133. FU X D, QI X X, LIU L, et al. Detecting and preventing collusion attack in DPoS based on power index[J]. Journal on Communications, 2022, 43(12): 123-133. [130] WANG L, ZHU Q H, LI B Z. Extensive game analysis and improvement strategy of DPOS consensus mechanism[J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(5): 27-35. [131] KANG J W, XIONG Z H, NIYATO D, et al. Incentivizing consensus propagation in proof-of-stake based consortium blockchain networks[J]. IEEE Wireless Communications Letters, 2019, 8(1): 157-160. [132] XIONG Z H, FENG S H, NIYATO D, et al. Optimal pricing-based edge computing resource management in mobile blockchain[C]//Proceedings of the 2018 IEEE International Conference on Communications. Piscataway: IEEE, 2018: 1-6. [133] YANG Z, MIAO Y, CHEN Z Y, et al. Zero-determinant strategy for the algorithm optimize of blockchain PoW consensus[C]//Proceedings of the 2017 36th Chinese Control Conference. Piscataway: IEEE, 2017: 1441-1446. [134] ALMALLOHI I A I, ALOTAIBI A S M, ALGHAFEES R, et al. Multivariable based checkpoints to mitigate the long range attack in proof-of-stake based blockchains[C]//Proceedings of the 3rd International Conference on High Performance Compilation, Computing and Communications. New York: ACM, 2019: 118-122. [135] 王贺立, 闫巧. 基于交易记录特征的自私挖矿检测方案[J]. 网络与信息安全学报, 2023, 9(2): 104-114. WANG H L, YAN Q. Selfish mining detection scheme based on the characters of transactions[J]. Chinese Journal of Network and Information Security, 2023, 9(2): 104-114. [136] MI?I? J, MI?I? V B, CHANG X L, et al. Modeling of Bitcoin’s blockchain delivery network[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(3): 1368-1381. [137] MISIC J, MISIC V B, CHANG X L. On ledger inconsistency time in Bitcoin’s blockchain delivery network[C]//Proceedings of the 2019 IEEE Global Communications Conference. Piscataway: IEEE, 2019: 1-6. [138] SHAHSAVARI Y, ZHANG K W, TALHI C. A theoretical model for fork analysis in the Bitcoin network[C]//Proceedings of the 2019 IEEE International Conference on Blockchain. Piscataway: IEEE, 2019: 237-244. [139] COUTO DA SILVA F J, DAMSGAARD S B, MOUSING SORENSEN M A, et al. Analysis of blockchain forking on an Ethereum network[C]//Proceedings of the 25th European Wireless Conference, 2019: 1-6. [140] WANG S L, WANG C Y, HU Q. Corking by forking: vulnerability analysis of blockchain[C]//Proceedings of the IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 829-837. [141] FAN W J, WUTHIER S, HONG H J, et al. The security investigation of ban score and misbehavior tracking in Bitcoin network[C]//Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems. Piscataway: IEEE, 2022: 191-201. [142] FAN W J, HONG H J, KIM J, et al. Lightweight and identifier-oblivious engine for cryptocurrency networking anomaly detection[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(2): 1302-1318. [143] PETERSON M, ANDEL T, BENTON R. Towards detection of selfish mining using machine learning[C]//Proceedings of the 17th International Conference on Cyber Warfare and Security, 2022: 237-243. [144] NIKHALAT-JAHROMI A, SAGHIRI A M, MEYBODI M R. Nik defense: an artificial intelligence based defense mechanism against selfish mining in Bitcoin[J]. arXiv: 2301.11463, 2023. |
| [1] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [2] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [3] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [4] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [5] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [6] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [7] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [8] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [9] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [10] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [11] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [12] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [13] | 吴瑞琪, 周毅. 知识融入多源多任务学习的眼底图像分类方法[J]. 计算机工程与应用, 2025, 61(7): 255-266. |
| [14] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [15] | 李佳静, 李盛, 戴媛媛, 孟涛, 罗小清, 闫宏飞. 融合位置信息和交互注意力的方面级情感分析[J]. 计算机工程与应用, 2025, 61(6): 220-228. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||