计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 176-184.DOI: 10.3778/j.issn.1002-8331.2409-0115

• 理论与研发 • 上一篇    下一篇

用于精准预测空间蛋白组与转录组细胞丰度的智能方法

宋渝杰,曾远松,杨跃东,戴智明   

  1. 1.中山大学 计算机学院,广州 510000 
    2.重庆大学 大数据与软件工程学院,重庆 400044
  • 出版日期:2025-07-01 发布日期:2025-06-30

Smart Method for Precise Prediction of Cell Abundance in Spatial Proteomics and Transcriptomics

SONG Yujie, ZENG Yuansong, YANG Yuedong, DAI Zhiming   

  1. 1.School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
    2.School of Big Data and Software Engineering, Chongqing University, Chongqing 400044, China
  • Online:2025-07-01 Published:2025-06-30

摘要: 细胞类型反卷积是从复杂组学数据(如空间蛋白组学和转录组学)中解析细胞丰度的关键技术。然而,传统的反卷积方法通常仅针对特定组学数据进行设计,未能提供通用的预测框架。为此,提出了一种新型深度学习反卷积方法——SpatialDec,旨在同时处理蛋白组学和转录组学数据。SpatialDec结合了图神经网络的优势,能够识别复杂的细胞交互关系,并通过三元组损失函数强化细胞间的相似性与差异性。此外,SpatialDec采用领域自适应技术,有效去除源数据和目标数据之间的批次效应。大量实验证明,SpatialDec在多个蛋白组学和转录组学数据集上显著提升了预测性能。在蛋白组学数据集上,SpatialDec将均方根误差(RMSE)降低了21.9%,Lin的一致性相关系数(CCC)提高了46.1%,皮尔逊相关系数(PCC)提高了18.0%。在转录组学数据集上,SpatialDec也显著提高了性能,将RMSE降低了34.0%,CCC提高了45.4%,PCC提高了43.8%。

关键词: 细胞类型反卷积, 蛋白组学, 图神经网络, 三元组损失

Abstract: Cell type deconvolution is a pivotal analytical approach that deciphers the abundance of cell types from complex omics datasets, including spatial proteomics and transcriptomics. Traditionally, deconvolution techniques have been tailored to individual omics types, addressing specific research questions but falling short of offering a unified predictive framework. This paper introduces SpatialDec, a deep learning-based deconvolution method applicable to both proteomics and transcriptomics data. SpatialDec harnesses the power of graph neural networks to discern intricate cellular interactions and enhances the similarities and differences of cells through triplet loss. Additionally, the domain adaptation technique is employed to remove batch effects between source and target data. Extensive experiments demonstrate that SpatialDec exhibits superior performance across multiple proteomics and transcriptomics datasets. Compared to state-of-the-art methods, SpatialDec reduces root mean square error (RMSE) by 21.9%, increases Lin’s concordance correlation coefficient (CCC) by 46.1%, and boosts Pearson correlation coefficient (PCC) by 18.0% in proteomics datasets. Moreover, SpatialDec decreases RMSE by 34.0%, increases CCC by 45.4%, and improves PCC by 43.8% in transcriptomics datasets.

Key words: cell type deconvolution, proteomics, graph neural networks, triplet loss