[1] JIANG S, QIAN Q H, ZHU T T, et al. Cell Taxonomy: a curated repository of cell types with multifaceted characterization[J]. Nucleic Acids Research, 2023, 51(D1): D853-D860.
[2] ZEISEL A, HOCHGERNER H, L?NNERBERG P, et al. Molecular architecture of the mouse nervous system[J]. Cell, 2018, 174(4): 999-1014.
[3] MOFFITT J R, BAMBAH-MUKKU D, EICHHORN S W, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region[J]. Science, 2018, 362(6416): eaau5324.
[4] RAO A, BARKLEY D, FRAN?A G S, et al. Exploring tissue architecture using spatial transcriptomics[J]. Nature, 2021, 596(7871): 211-220.
[5] MOSES L, PACHTER L. Museum of spatial transcriptomics[J]. Nature Methods, 2022, 19(5): 534-546.
[6] HAN X P, WANG R Y, ZHOU Y C, et al. Mapping the mouse cell atlas by microwell-seq[J]. Cell, 2018, 172(5): 1091-1107.
[7] CAO J Y, SPIELMANN M, QIU X J, et al. The single-cell transcriptional landscape of mammalian organogenesis[J]. Nature, 2019, 566(7745): 496-502.
[8] SVENSSON V, VENTO-TORMO R, TEICHMANN S A. Exponential scaling of single-cell RNA-seq in the past decade[J]. Nature Protocols, 2018, 13(4): 599-604.
[9] NEWMAN A M, STEEN C B, LIU C L, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry[J]. Nature Biotechnology, 2019, 37(7): 773-782.
[10] MENDEN K, MAROUF M, OLLER S, et al. Deep learning-based cell composition analysis from tissue expression profiles[J]. Science Advances, 2020, 6(30): eaba2619.
[11] CABLE D M, MURRAY E, ZOU L S, et al. Robust decomposition of cell type mixtures in spatial transcriptomics[J]. Nature Biotechnology, 2022, 40(4): 517-526.
[12] EDWARDS N J, OBERTI M, THANGUDU R R, et al. The CPTAC data portal: a resource for cancer proteomics research[J]. Journal of Proteome Research, 2015, 14(6): 2707-2713.
[13] LOPEZ R, LI B G, KEREN-SHAUL H, et al. DestVI identifies continuums of cell types in spatial transcriptomics data[J]. Nature Biotechnology, 2022, 40(9): 1360-1369.
[14] CHU T, WANG Z, PE’ER D, et al. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology[J]. Nature Cancer, 2022, 3(4): 505-517.
[15] WANG X R, PARK J, SUSZTAK K, et al. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference[J]. Nature Communications, 2019, 10(1): 380.
[16] BIANCALANI T, SCALIA G, BUFFONI L, et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram[J]. Nature Methods, 2021, 18(11): 1352-1362.
[17] WANG F, YANG F, HUANG L K, et al. Deep domain adversarial neural network for the deconvolution of cell type mixtures in tissue proteome profiling[J]. Nature Machine Intelligence, 2023, 5(11): 1236-1249.
[18] HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97.
[19] MNIH V. Playing atari with deep reinforcement learning[J]. arXiv:1312.5602, 2013.
[20] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012.
[21] RAO J H, ZHOU X, LU Y T, et al. Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks[J]. iScience, 2021, 24(5): 102393.
[22] ROOHANI Y, HUANG K X, LESKOVEC J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS[J]. Nature Biotechnology, 2024, 42(6): 927-935.
[23] PAN Y, WANG X, SUN J, et al. Multimodal joint deconvolution and integrative signature selection in protomics[J]. Communications Biology, 2024, 7(1): 493.
[24] TENG P N, SCHAAF J P, ABULEZ T, et al. ProteoMixture: a cell type deconvolution tool for bulk tissue proteomic data[J]. iScience, 2024, 27(3): 109198.
[25] XU B, WANG N Y, CHEN T Q, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv: 1505.00853, 2015.
[26] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems, 2017.
[27] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823.
[28] DOU M W, CLAIR G, TSAI C F, et al. High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform[J]. Analytical Chemistry, 2019, 91(20): 13119-13127.
[29] WOO J, WILLIAMS S M, MARKILLIE L M, et al. High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip[J]. Nature Communications, 2021, 12(1): 6246.
[30] GRAY G K, LI C M, ROSENBLUTH J M, et al. A human breast atlas integrating single-cell proteomics and transcriptomics[J]. Developmental Cell, 2022, 57(11): 1400-1420.
[31] LIN L I. A concordance correlation coefficient to evaluate reproducibility[J]. Biometrics, 1989, 45(1): 255-268.
[32] KARL P. Contributions to the mathematical theory of evolution[J]. Philosophical Transactions of the Royal Society of London Series A, 1894, 185: 71-110. |