[1] SHAOQING R, KAIMING H, ROSS G, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[2] REDMON J, DIVVALA K S, GIRSHICK B R, et al. You only look once: unified, real-time object detection[J]. J-STAGE, 2016, 18: 779-788.
[3] LIU W, ANGUELOV D , ERHAN D, et al. SSD: single shot multibox detector[J]. J-STAGE, 2016, 18: 21-37.
[4] 梁鑫, 代倩.基于注意力机制的改进YOLOv3与交通标志检测[J].现代计算机, 2022, 28(15): 9-16.
LIANG X, DAI Q. Improved YOLOv3 based on attention mechanism and its application in traffic sign detection[J]. Modern Computer, 2022, 28(15): 9-16.
[5] YAO Y B, LI H, DU C J, et al.Traffic sign detection algorithm based on improved YOLOv4-tiny[J]. Signal Processing: Image Communication, 2022, 107: 116783.
[6] 李杰, 高尚兵, 胡序洋, 等.基于DL-SSD模型的交通标志检测算法[J]. 扬州大学学报(自然科学版), 2022, 25(5): 47-53.
LI J, GAO S B, HU X Y, et al. Traffic sign detection algorithm based on DL-SSD model[J]. Journal of Yangzhou University (Natural Science Edition), 2022, 25(5): 47-53.
[7] 郎斌柯, 吕斌, 吴建清, 等.基于CA-BIFPN的交通标志检测模型[J].深圳大学学报(理工版), 2023, 40(3): 335-343.
LANG B K, LU B, WU J Q, et al. A traffic sign detection model based on CA-BIFPN[J]. Journal of Shenzhen University (Science And Engineering), 2023, 40(3): 335-343.
[8] 石镇岳, 侯婷, 苏勇东.改进YOLOv7的交通标志检测算法[J].计算机系统应用, 2023, 32(10): 157-165.
SHI Z Y, HOU T, SU Y D. Improved YOLOv7 traffic sign detection algorithm[J]. Computer Systems & Applications, 2023, 32(10): 157-165.
[9] REDMON J , FARHADI A. YOLO9000: better, faster, stronger[J]. J-STAGE, 2017, 19: 6517-6525.
[10] WANG Z, ZHU H, JIA X, et al. Surface defect detection with modified real-time detector YOLOv3[J]. Journal of Sensors, 2022, 2022: 8668149.
[11] ZHAO J, TIAN G, QIU C, et al.Weed detection in potato fields based on improved YOLOv4: optimal speed and accuracy of weed detection in potato fields[J]. Electronics, 2022, 11(22): 3709.
[12] ZHANG R, ZHENG K, SHI P, et al. Traffic sign detection based on the improved YOLOv5[J]. Applied Sciences, 2023, 13(17): 9748.
[13] YE G, QU J, TAO J, et al. Autonomous surface crack identification of concrete structures based on the YOLOv7 algorithm[J]. Journal of Building Engineering, 2023, 73(15): 106688.
[14] 成浪, 敬超.基于改进YOLOv7的X线图像旋转目标检测[J].图学学报, 2023, 44(2): 324-334.
CHENG L, JING C. Rotating target detection in X-ray images based on improved YOLOv7[J]. Journal of Graphics, 2023, 44(2): 324-334.
[15] OUYANG W, ZENG X, WANG X, et al. DeepID-Net: deformable deep convolutional neural networks for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1320-1334.
[16] VARSHNEY M, SINGH P. Optimizing nonlinear activation function for convolutional neural networks[J]. Signal, Image and Video Processing, 2021, 15(6): 1-8.
[17] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 17: 1-9.
[18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[J]. J-STAGE, 2015, 17: 770-778.
[19] HUANG G, LIU Z, LAURENS V D M , et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
[20] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[21] GUO L, HE J, LIN P, et al.TRScore: a three-dimensional RepVGG-based scoring method for ranking protein docking models[J]. Bioinformatics, 2022, 38(9): 2444-2451.
[22] IOFFE S, SZEGEDY C.Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. arXiv:1502.03167, 2015.
[23] 苏树智, 蒋博文, 陈润斌.基于实例归一化的通道注意力模块[J].计算机仿真, 2024, 41(1): 227-231.
SU S Z, JIANG B W, CHEN R B.Channel attention module based on instance normalization[J]. Computer Simulation, 2024, 41(1): 227-231.
[24] 尹宋麟, 谭飞, 周晴, 等.基于改进YOLOv4模型的交通标志检测[J].无线电工程, 2022, 52(11): 2087-2093.
YIN S L, TAN F, ZHOU Q, et al. Traffic sign detection based on improved YOLOv4 model[J]. Radio Engineering, 2022, 52(11): 2087-2093.
[25] 张达为, 刘绪崇, 周维, 等.基于改进YOLOv3的实时交通标志检测算法[J].计算机应用, 2022, 42(7): 2219-2226.
ZHANG D W, LIU X C, ZHOU W, et al. Real-time traffic sign detection algorithm based on improved YOLOv3[J]. Journal of Computer Applications, 2022, 42(7): 2219-2226.
[26] 李禹纬, 付锐, 刘帆.改进YOLOv7的轻量化交通标志检测算法[J].太原理工大学学报, 2024, 55(1): 195-203.
LI Y W, FU R, LIU F. Traffic sign detection algorithm based on improved YOLOv7[J]. Journal of Taiyuan University of Technology, 2024, 55(1): 195-203.
[27] 杨祥, 王华彬, 董明刚.改进YOLOv5的交通标志检 测算法[J].计算机工程与应用, 2023, 59(13): 194-204.
YANG X, WANG H B, DONG M G. Improving the trafficsign detection and calculation method of YOLOv5[J]. Computer Engineering and Applications, 2023, 59(13): 194-204. |