[1] 蒋春颖, 杨雪清, 张国丽, 等. 森林火灾风险评估技术体系探讨[J]. 林业资源管理, 2023(2): 17-26.
JIANG C Y, YANG X Q, ZHANG G L, et al. Discussion on the technical system of forest fire risk assessment[J]. Forest and Grassland Resources Research, 2023(2): 17-26.
[2] 徐建军. 计算机视觉技术在遥感卫星影像目标检测中的应用研究[J]. 信息记录材料, 2023, 24(5): 62-64.
XU J J. Computer vision technology in remote sensing satellite image target detection application research[J]. Information Recording Materials, 2023, 24(5): 62-64.
[3] YUAN F. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids[J]. Fire Safety Journal, 2011, 46(3): 132-139.
[4] HO C C. Nighttime fire/smoke detection system based on a support vector machine[J]. Mathematical Problems in Engineering, 2013: 428545.
[5] GU K, XIA Z, QIAO J, et al. Deep dual-channel neural network for image-based smoke detection[J]. IEEE Transactions on Multimedia, 2019, 22(2): 311-323.
[6] LIU Y, QIN W, LIU K, et al. A dual convolution network using dark channel prior for image smoke classification[J]. IEEE Access, 2019, 7: 60697-60706.
[7] BA R, CHEN C, YUAN J, et al. SmokeNet: satellite smoke scene detection using convolutional neural network with spatial and channel-wise attention[J]. Remote Sensing, 2019, 11(14): 1702.
[8] TOAN N T, CONG P T, HUNG N Q V, et al. A deep learning approach for early wildfire detection from hyperspectral satellite images[C]//Proceedings of the 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), 2019: 38-45.
[9] GOVIL K, WELCH M L, BALL J T, et al. Preliminary results from a wildfire detection system using deep learning on remote camera images[J]. Remote Sensing, 2020, 12(1): 166.
[10] XIA X, XU C, NAN B. Inception-v3 for flower classification[C]//Proceedings of the 2017 2nd International Conference on Image, Vision and Computing (ICIVC), 2017: 783-787.
[11] WOO S, DEBNATH S, HU R, et al. ConvNeXt V2: co-designing and scaling convnets with masked autoencoders[J]. arXiv:2301.00808, 2023.
[12] CHATURVEDI S, KHANNA P, OJHA A. A survey on vision-based outdoor smoke detection techniques for environmental safety[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185: 158-187.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[14] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[15] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[16] QUAN Y, ZHANG D, ZHANG L, et al. Centralized feature pyramid for object detection[J]. arXiv:2210.02093, 2022.
[17] YUAN F, ZHANG L, XIA X, et al. Deep smoke segmentation[J]. Neurocomputing, 2019, 357: 248-260.
[18] KHAN S, MUHAMMAD K, MUMTAZ S, et al. Energy-efficient deep CNN for smoke detection in foggy IoT environment[J]. IEEE Internet of Things Journal, 2019, 6(6): 9237-9245.
[19] XIE Z, SONG W, BA R, et al. A spatiotemporal contextual model for forest fire detection using Himawari-8 satellite data[J]. Remote Sensing, 2018, 10(12): 1992.
[20] ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021: 2235-2239.
[21] YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 11863-11874.
[22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[23] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[25] HUANG Z, WANG X, HUANG L, et al. CCNet: criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 603-612.
[26] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[27] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[28] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Advances in Neural Information Processing Systems, 2020: 21002-21012.
[29] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[30] AL-SMADI Y, ALAUTHMAN M, AL-QEREM A, et al. Early wildfire smoke detection using different YOLO models[J]. Machines, 2023, 11(2): 246.
[31] DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6): 9243-9275.
[32] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[33] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[34] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[35] CHEN G, CHENG R, LIN X, et al. LMDFS: a lightweight model for detecting forest fire smoke in UAV images based on YOLOv7[J]. Remote Sensing, 2023, 15(15): 3790.
[36] PAN H, BADAWI D, CETIN A E. Fourier domain pruning of mobilenet-v2 with application to video based wildfire detection[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), 2021: 1015-1022.
[37] WU X, CAO Y, LU X, et al. Patchwise dictionary learning for video forest fire smoke detection in wavelet domain[J]. Neural Computing and Applications, 2021, 33: 7965-7977.
[38] LARSEN A, HANIGAN I, REICH B J, et al. A deep learning approach to identify smoke plumes in satellite imagery in near-real time for health risk communication[J]. Journal of Exposure Science & Environmental Epidemiology, 2021, 31(1): 170-176. |