[1] BERTRAND N P, LEE J, PRUSSING K F, et al. Infrared search and track with unbalanced optimal transport dynamics regularization[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(12): 2072-2076.
[2] SHAO J N, YANG Q Y, LUO C Y, et al. Vessel detection from nighttime remote sensing imagery based on deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12536-12544.
[3] CHEN C C, ZENG W M, ZHANG X L. HFPNet: super feature aggregation pyramid network for maritime remote sensing small-object detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 5973-5989.
[4] SáNCHEZ-AZOFEIFA A, RIVARD B, WRIGHT J, et al. Estimation of the distribution of tabebuia guayacan (Bignoniaceae) using high-resolution remote sensing imagery[J]. Sensors, 2011, 11(4): 3831-3851.
[5] ZHENG Q P, MA J M, LIU M H, et al. Lightweight hot-spot fault detection model of photovoltaic panels in UAV remote-sensing image[J]. Sensors, 2022, 22(12): 4617.
[6] WANG X J, WU S H, LIU Y P. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation[C]//Proceedings of the Ninth International Conference on Graphic and Image Processing, 2018: 105.
[7] MITTAL M, VERMA A, KAUR I, et al. An efficient edge detection approach to provide better edge connectivity for image analysis[J]. IEEE Access, 2019, 7: 33240-33255.
[8] HAN J W, ZHOU P C, ZHANG D W, et al. Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89: 37-48.
[9] RADOUX J, DEFOURNY P. A quantitative assessment of boundaries in automated forest stand delineation using very high resolution imagery[J]. Remote Sensing of Environment, 2007, 110(4): 468-475.
[10] XU J T, LI Y L, WANG S J. AdaZoom: adaptive zoom network for multi-scale object detection in large scenes[J]. arXiv:2106.10409, 2021.
[11] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[12] YAO Y, JIANG Z G, ZHANG H P, et al. Chimney and condensing tower detection based on faster R-CNN in high resolution remote sensing images[C]//Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2017: 3329-3332.
[13] KIM S W, KOOK H K, SUN J Y, et al. Parallel feature pyramid network for object detection[C]//Proceedings of the European Conference on Computer Vision, 2018: 239-256.
[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[15] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[16] DENG Z P, LEI L, SUN H, et al. An enhanced deep convolutional neural network for densely packed objects detection in remote sensing images[C]//Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing. Piscataway: IEEE, 2017: 1-4.
[17] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2017.
[18] ZHANG Y M, HSIEH J W, LEE C C, et al. SFPN: synthetic FPN for object detection[C]//Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 1316-1320.
[19] ZHAO L L, ZHU M L. MS-YOLOv7: YOLOv7 based on multi-scale for object detection on UAV aerial photography[J]. Drones, 2023, 7(3): 188.
[20] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[21] JUNG C, ABUHAMAD M, ALIKHANOV J, et al. W-net: a CNN-based architecture for white blood cells image classification[J]. arXiv:1910.01091, 2019.
[22] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[23] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[24] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[25] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[26] PAN X R, GE C J, LU R, et al. On the integration of self-attention and convolution[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 805-815.
[27] CHENG G, HAN J W, ZHOU P C, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119-132.
[28] LONG Y, GONG Y P, XIAO Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.
[29] ZHANG Y L, YUAN Y, FENG Y C, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535-5548.
[30] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[31] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[32] ZHANG G J, LU S J, ZHANG W. CAD-net: a context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10015-10024.
[33] XU C Y, LI C Z, CUI Z, et al. Hierarchical semantic propagation for object detection in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4353-4364.
[34] KIM C D, JEONG J, KIM G. Imbalanced continual learning with partitioning reservoir sampling[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 411-428.
[35] CHRYSAKIS A, MOENS M F. Online continual learning from imbalanced data[C]//Proceedings of the International Conference on Machine Learning, 2020: 1952-1961.
[36] CHEN X, JIANG J, LI Z Q, et al. An online continual object detector on VHR remote sensing images with class imbalance[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105549.
[37] PANG J M, LI C, SHI J P, et al. R2-CNN: fast tiny object detection in large-scale remote sensing images[J]. arXiv:1902.06042, 2019.
[38] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[39] ZHANG H L, DU Q F, QI Q Y, et al. A recursive attention-enhanced bidirectional feature pyramid network for small object detection[J]. Multimedia Tools and Applications, 2023, 82(9): 13999-14018.
[40] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6568-6577.
[41] ZHOU K B, ZHANG Z X, GAO C X, et al. Rotated feature network for multiorientation object detection of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 33-37.
[42] ZHAO Q J, SHENG T, WANG Y T, et al. M2Det: a single-shot object detector based on multi-level feature pyramid network[J]. arXiv:1811.04533, 2018.
[43] HUANG W, LI G Y, CHEN Q Q, et al. CF2PN: a cross-scale feature fusion pyramid network based remote sensing target detection[J]. Remote Sensing, 2021, 13(5): 847.
[44] YU X Y, LYU W T, WANG C Q, et al. Progressive refined redistribution pyramid network for defect detection in complex scenarios[J]. Knowledge-Based Systems, 2023, 260: 110176.
[45] LV H, QIAN W X, CHEN T X, et al. Multiscale feature adaptive fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6511005.
[46] LI J J, ZHANG H Q, SONG R, et al. Structure-guided feature transform hybrid residual network for remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5610713.
[47] ADITHYA P, RIYAZUDDIN D Y M. Remote sensing object detection based on convolution and swin transformer[J]. International Journal for Innovative Engineering & Management Research, 2024, 13(4): 38643-38656.
[48] LOU H T, DUAN X H, GUO J M, et al. DC-YOLOv8: small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): 2323. |