计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (24): 116-133.DOI: 10.3778/j.issn.1002-8331.2506-0280

• 理论与研发 • 上一篇    下一篇

SN-BI-RRT*:基于动态梯度和人工势场的双向探索随机树算法

黄友锐1,2,朱忠涛1+,韩涛1   

  1. 1.安徽理工大学 电气与信息工程学院,安徽 淮南 232000 
    2.安徽工程大学 电气工程学院,安徽 芜湖 241000
  • 出版日期:2025-12-15 发布日期:2025-12-15

SN-BI-RRT*: Bidirectional Exploratory Random Tree Algorithm Based on Dynamic Gradient and Artificial Potential Field

HUANG Yourui1,2, ZHU Zhongtao1+, HAN Tao1   

  1. 1.School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232000, China
    2.School of Electrical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Online:2025-12-15 Published:2025-12-15

摘要: 针对RRT*(rapidly-exploring random tree star)算法在复杂障碍物场景下存在收敛效率低、搜索方向随机性强,导致生成路径效果不佳的问题,提出一种基于动态梯度采样和人工势场的双向快速探索随机树算法(SN-BI-RRT*)。采用分步式动态梯度采样策略优化采样过程,更有效地探索配置空间。在拓展方面引入一种改进的人工势场法,提高算法的收敛速度。对生成的新节点采用改进的重连父节点策略进行优化,减少路径总成本。为了提高路径的平滑度,采用路径剪枝、线性插值和B样条平滑的融合路径平滑策略进行后处理。通过仿真实验,将SN-BI-RRT*算法与其他几种基于采样的路径规划算法在不同障碍物环境和狭窄环境下进行了比较,结果表明该算法在不同环境下均有良好的性能,在机器人路径规划中可以有效解决机器人在复杂室内环境中的高效路径规划问题。

关键词: 路径规划, 动态梯度采样策略, 人工势场法, 节点优化

Abstract: Aiming at the problems of low convergence efficiency and randomness of search direction of RRT*(rapidly-exploring random tree star) algorithm in complex obstacle scenarios, which lead to poor path generation, this paper proposes a bidirectional fast exploratory random tree algorithm (SN-BI-RRT*) based on dynamic gradient sampling and artificial potential field. A stepwise dynamic gradient sampling strategy is used to optimize the sampling process and explore the configuration space more effectively. An improved artificial potential field method is introduced in the expansion to improve the convergence speed of the algorithm. In addition, the generated new nodes are optimized with an improved reconnection parent node strategy to reduce the total cost of the path. In order to improve the smoothness of the paths, a fusion path smoothing strategy of path pruning, linear interpolation and B-spline smoothing is used for post-processing. Through simulation experiments, the SN-BI-RRT* algorithm is compared with several other sampling-based path planning algorithms in different obstacle environments and narrow environments, and the results show that the algorithm has good performance in different environments, and it can be an effective solution to the problem of efficient path planning for robots in complex indoor environments in robot path planning.

Key words: path planning, dynamic gradient sampling strategy, artificial potential field method, node optimization