[1] DING J, ZHOU Y X, HUANG X, et al. An improved RRT* algorithm for robot path planning based on path expansion heuristic sampling[J]. Journal of Computational Science, 2023, 67: 101937.
[2] 姜佩贺, 王敬, 桑忠启, 等. 改进A*与DWA的室内服务机器人路径规划研究[J]. 计算机工程与应用, 2024, 60(15): 327-335.
JIANG P H, WANG J, SANG Z Q, et al. Research on indoor service robot path planning based on improved A* and DWA[J]. Computer Engineering and Applications, 2024, 60(15): 327-335.
[3] 孙帅帅, 冯春晓, 张良. 基于离散采样的多模态四足机器人路径规划[J]. 吉林大学学报(工学版), 2024, 54(4): 1120-1128.
SUN S S, FENG C X, ZHANG L. Trajectory path planning for multimodal quadruped robots based on discrete sampling[J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1120-1128.
[4] 宋宇航, 陈宇帆, 魏延岭, 等. 基于强化学习环境设计策略的电动汽车充电路径规划[J]. 电力系统自动化, 2024, 48(11): 184-196.
SONG Y H, CHEN Y F, WEI Y L, et al. Charging path planning for electric vehicles based on reinforcement learning environment design strategy[J]. Automation of Electric Power Systems, 2024, 48(11): 184-196.
[5] GU Q Y, ZHEN R, LIU J L, et al. An improved RRT algorithm based on prior AIS information and DP compression for ship path planning[J]. Ocean Engineering, 2023, 279: 114595.
[6] 刘建宇, 范平清. 基于改进的RRT~*-connect算法机械臂路径规划[J]. 计算机工程与应用, 2021, 57(6): 274-278.
LIU J Y, FAN P Q. Robot path planning of manipulator based on improved RRT*-connect algorithm[J]. Computer Enginee-ring and Applications, 2021, 57(6): 274-278.
[7] 靳午煊, 马向华, 赵金良. 改进Informed-RRT*的移动机器人路径规划算法研究[J]. 计算机工程与应用, 2023, 59(19): 75-81.
JIN W X, MA X H, ZHAO J L. Research on path planning algorithm of mobile robot based on improved informed-RRT*[J]. Computer Engineering and Applications, 2023, 59(19): 75-81.
[8] SUWOYO H, ADRIANSYAH A, ANDIKA J, et al. An integrated RRT*SmarT-A* algorithm for solving the global path planning problem in a static environment[J]. IIUM Engineering Journal, 2023, 24(1): 269-284.
[9] LIU Y, ZHOU Z D, SANG H, et al. Efficient exploration of mobile robot based on DL-RRT and AP-BO[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-9.
[10] WANG Y, KONG Y Q, DING Z Y, et al. NRTIRL based NN-RRT* path planner in human-robot interaction environment[C]//Proceeding of the 14th International Conference on Social Robotics. Cham: Springer Nature Switzerland, 2022: 496-508.
[11] LIU H Y, ZHANG X B, WEN J, et al. Goal-biased bidirectional RRT based on curve-smoothing[J]. IFAC-PapersOnLine, 2019, 52(24): 255-260.
[12] LI Q H, WANG J H, LI H M, et al. Fast-RRT*: an improved motion planner for mobile robot in two-dimensional space[J]. IEEJ Transactions on Electrical and Electronic Enginee-ring, 2022, 17(2): 200-208.
[13] YU S N, CHEN J K, LIU G Y, et al. SOF-RRT*: an improved path planning algorithm using spatial offset sampling[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106875.
[14] 刘奥博, 袁杰. 目标偏置双向RRT*算法的机器人路径规划[J]. 计算机工程与应用, 2022, 58(6): 234-240.
LIU A B, YUAN J. Robot path planning based on goal biased bidirectional RRT* algorithm[J]. Computer Engineering and Applications, 2022, 58(6): 234-240.
[15] SUN Z R, WANG J K, MENG M Q H. Multi-tree guided efficient robot motion planning[J]. Procedia Computer Science, 2022, 209: 31-39.
[16] JI H C, XIE H B, WANG C, et al. E-RRT*: path planning for hyper-redundant manipulators[J]. IEEE Robotics and Automation Letters, 2023, 8(12): 8128-8135.
[17] CHEN Y, HE Z, LI S L, Horizon-based lazy optimal RRT for fast, efficient replanning in dynamic environment[J]. Autonomous Robots, 2019, 43(8): 2271-2292.
[18] LI Y, CUI R X, LI Z J, et al. Neural network approximation based near-optimal motion planning with kinodynamic constraints using RRT[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8718-8729.
[19] SALZMAN O, HALPERIN D. Asymptotically near-optimal RRT for fast, high-quality, motion planning[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2014: 4680-4685.
[20] QI J Y, YUAN Q N, WANG C, et al. Path planning and collision avoidance based on the RRT*FN framework for a robotic manipulator in various scenarios[J]. Complex & Intelligent Systems, 2023, 9(6): 7475-7494.
[21] 刘佳顺, 刘检华, 张之敬, 等. 基于任意时间RRT算法的三维自动布线技术[J]. 机械工程学报, 2016, 52(13): 156-165.
LIU J S, LIU J H, ZHANG Z J, et al. Anytime RRT based cable automatic routing under three-dimensional environment[J]. Journal of Mechanical Engineering, 2016, 52(13): 156-165.
[22] ESMAIEL H, ZHAO G L, QASEM Z A, et al. Double-Layer RRT* objective bias anytime motion planning algorithm[J]. Robotics, 2024, 13(3): 41.
[23] LIANG Y M, ZHAO H Y. CCPF-RRT*: an improved path planning algorithm with consideration of congestion[J]. Expert Systems with Applications, 2023, 228: 120403 .
[24] QI J, YANG H, SUN H X. MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment[J]. IEEE Transactions on Industrial Electronics, 2020, 68(8): 7244-7251.
[25] MA B S, WEI C, HUANG Q, et al. APF-RRT*: an efficient sampling-based path planning method with the guidance of artificial potential field[C]//Proceedings of the 9th International Conference on Mechatronics and Robotics Engineering, 2023: 207-213.
[26] FAN J M, CHEN X, LIANG X. UAV trajectory planning based on bi-directional APF-RRT* algorithm with goal-biased[J]. Expert Systems with Applications, 2023, 213: 119137.
[27] CONG K D, HU Y H, XU L, et al. Safe model predictive tracking with an improved APF-RRT* path planning for UGVs [C]//Proceedings of the IEEE International Conference on Unmanned Systems, 2023: 1165-1170. |