计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 114-122.DOI: 10.3778/j.issn.1002-8331.2407-0198

• 路径规划专题 • 上一篇    下一篇

概率采样和目标偏置的变步长RRT*机器人路径规划

盛兆康,宋家乐,水翔,宋廷强,孙媛媛   

  1. 1.青岛科技大学 信息科学技术学院,山东 青岛 266061
    2.中国石油大学(北京) 信息科学与工程学院,北京 102249
  • 出版日期:2025-10-15 发布日期:2025-10-15

Probabilistic Sampling and Target-Biased Variable Step-Length RRT* for Robot Path Planning

SHENG Zhaokang, SONG Jiale, SHUI Xiang, SONG Tingqiang, SUN Yuanyuan   

  1. 1.College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, Shandong 266061, China
    2.College of Information Science and Engineering, China University of Petroleum (Beijing), Beijing 102249, China
  • Online:2025-10-15 Published:2025-10-15

摘要: 针对传统RRT*改进算法路径规划的随机性大、效率低、搜索时间长、路径质量差等问题,提出了一种名为ASP-RRT*的高效路径规划方法。该方法结合任务需求和环境特点,构建了一个包含目标距离、参考路径距离和障碍物复杂度的综合评价函数,并将地图环境分成不同区域,利用该评价函数对每个区域进行评分并计算其采样概率。基于这种概率设计了两种随机采样点,第一种用于引导整体路径探索方向,第二种用于优化局部路径。与此同时,使用目标偏置策略进一步控制第二种采样点的选取,加快向目标点扩展的速度。此外,采用动态步长策略,根据障碍物的复杂度动态调整RRT*的扩展距离。分段使用三次样条插值法对路径进行优化,使其更适合机器人移动。在六种不同环境中对算法进行仿真实验,结果表明,ASP-RRT*在时间效率和路径质量等方面均优于现有的基于采样的路径规划方法,且具有较高的可行性。

关键词: 路径规划, 评价函数, RRT*, ASP-RRT*, 目标偏置, 三次样条插值法

Abstract: To address the issues of high randomness, low efficiency, long search time, and poor path quality in traditional RRT* algorithm for path planning, a new efficient method named ASP-RRT* is proposed. This method combines task requirements and environmental characteristics to construct a comprehensive evaluation function that includes target distance, reference path distance, and obstacle complexity. The map environment is divided into different areas, and this evaluation function is used to score each area and calculate its sampling probability. Based on this probability, two types of random sampling points are designed: the first type is used to guide the overall direction of path exploration, and the second type is used to optimize the local path. At the same time, a target bias strategy is used to further control the selection of the second type of sampling points, accelerating the expansion speed towards the target. Additionally, a dynamic step strategy is adopted to adjust the expansion distance of RRT* dynamically according to the complexity of obstacles. Finally, cubic spline interpolation is applied in segments to optimize the path, making it more suitable for robot movement. Simulation experiments are conducted in six different environments, and the results demonstrate that ASP-RRT* outperforms existing sampling-based path planning methods in terms of time efficiency and path quality, and it exhibits high feasibility.

Key words: path planning, evaluation function, RRT*, ASP-RRT*, target bias, cubic spline interpolation