[1] 王耀南, 江一鸣, 姜娇, 等. 机器人感知与控制关键技术及其智能制造应用[J]. 自动化学报, 2023, 49(3): 494-513.
WANG Y N, JIANG Y M, JIANG Q, et al. Key technologies of robot perception and control and its intelligent manufacturing applications[J]. Acta Automatica Sinica, 2023, 49(3): 494-513.
[2] FANG Y, LU L W, ZHANG B Q, et al. Motion control of obstacle avoidance for the robot arm via improved path planning algorithm[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46(12): 727.
[3] WANG Y, JIANG W S, LUO Z, et al. Path planning of a 6-DOF measuring robot with a direction guidance RRT method[J]. Expert Systems with Applications, 2024, 238: 122057.
[4] 申子祥, 孙训红, 从永正, 等. 基于时空冲突和非完整约束下的多AMR调度算法研究[J]. 控制与决策, 2025, 40(3): 981-986.
SHEN Z X, SUN X H, CONG Y Z, et al. Research on multi-AMR scheduling algorithm based on spatiotemporal conflicts and nonholonomic constraints[J]. Control and Decision, 2025, 40(3): 981-986.
[5] LIAO T J, CHEN F, WU Y T, et al. Research on path planning with the integration of adaptive A-star algorithm and imp-roved dynamic window approach[J]. Electronics, 2024, 13(2): 455.
[6] LIU L S, LIN J F, YAO J X, et al. Path planning for smart car based on dijkstra algorithm and dynamic window approach[J]. Wireless Communications and Mobile Computing, 2021, 2021: 8881684.
[7] 杨旭海, 周文皓, 李育峰, 等. 采摘机械臂路径规划算法研究现状综述[J]. 中国农机化学报, 2023, 44(5): 161-169.
YANG X H, ZHOU W H, LI Y F, et al. Review of path planning algorithms for picking manipulator[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 161-169.
[8] SHAN S F, SHAO J J, ZHANG H J, et al. Research and validation of self-driving path planning algorithm based on optimized A*-artificial potential field method[J]. IEEE Sensors Journal, 2024, 24(15): 24708-24722.
[9] GAO Y, LI D Z, SUI Z, et al. Trajectory planning and trac-king control of autonomous vehicles based on improved artificial potential field[J]. IEEE Transactions on Vehicular Technology, 2024, 73(9): 12468-12483.
[10] YANG J, ZHANG H C, NING P. Path planning and trajectory optimization based on improved APF and multi-target[J]. IEEE Access, 2023, 11: 139121-139132.
[11] CHEN Y, WU J F, HE C S, et al. Intelligent warehouse robot path planning based on improved ant colony algorithm[J]. IEEE Access, 2023, 11: 12360-12367.
[12] HUANG C S, ZHAO Y P, ZHANG M J, et al. APSO: an A*-PSO hybrid algorithm for mobile robot path planning[J]. IEEE Access, 2023, 11: 43238-43256.
[13] PALACIOS-MOROCHO E, INCA S, MONSERRAT J F. Multipath planning acceleration method with double deep R-learning based on a genetic algorithm[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10): 12681-12696.
[14] WU Z P, MENG Z J, ZHAO W L, et al. Fast-RRT: a RRT-based optimal path finding method[J]. Applied Sciences, 2021, 11(24): 11777.
[15] KUFFNER J J, LAVALLE S M. RRT-Connect: an efficient approach to single-query path planning[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2000: 995-1001.
[16] 孔滕广, 高焕兵, 陈修贤. 基于改进RRT的清扫机器人全覆盖路径规划[J]. 计算机工程与应用, 2024, 60(13): 311-318.
KONG T G, GAO H B, CHEN X X. Full-coverage path planning for cleaning robot based on improved RRT[J]. Computer Engineering and Applications, 2024, 60(13): 311-318.
[17] ZHANG M Y, CHEN Y F, LUO S, et al. Path planning of the robotic manipulator based on an improved Bi-RRT[J]. IEEE Sensors Journal, 2024, 24(19): 31245-31261.
[18] LI B H, CHEN B D. An adaptive rapidly-exploring random tree[J]. CAA Journal of Automatica Sinica, 2022, 9(2): 283-294.
[19] DAI J, ZHANG Y, DENG H. Novel potential guided bidirectional RRT* with direct connection strategy for path planning of redundant robot manipulators in joint space[J]. IEEE Transactions on Industrial Electronics, 2024, 71(3): 2737-2747.
[20] JIANG L H, LIU S Y, CUI Y M, et al. Path planning for robotic manipulator in complex multi-obstacle environment based on Improved_RRT[J]. ASME Transactions on Mechatronics, 2022, 27(6): 4774-4785.
[21] 陈善言, 关永, 施智平, 等. 机器人碰撞检测方法形式化[J]. 软件学报, 2022, 33(6): 2246-2263.
CHEN S Y, GUAN Y, SHI Z P, et al. Formalization of collision detection method for robots[J]. Journal of Software, 2022, 33(6): 2246-2263.
[22] 张振, 李新宇, 董昊臻, 等. 基于约束采样RRT的机械臂运动规划[J]. 计算机集成制造系统, 2022, 28(6): 1616-1626.
ZHANG Z, LI X Y, DONG H Z, et al. Constrained sampling method based RRT algorithm for manipulator motion planning[J]. Computer Integrated Manufacturing Systems, 2022, 28(6): 1616-1626.
[23] 陈丹, 谭钦, 徐哲壮. 基于采样点优化RRT算法的机械臂路径规划[J]. 控制与决策, 2024, 39(8): 2597-2604.
CHEN D, TAN Q, XU Z Z. Robotic arm path planning based on sampling point optimization RRT algorithm[J]. Control and Decision, 2024, 39(8): 2597-2604.
[24] 王雨. 基于改进RRT算法的工业机器人路径规划研究[D]. 济南: 山东大学, 2023.
WANG Y. Research on path planning of industrial robot based on improved RRT algorithm[D]. Jinan: Shandong University, 2023.
[25] 罗征志, 韩怡可, 张鑫, 等. 改进RRT-Connect与DWA算法的巡检机器人路径规划研究[J]. 计算机工程与应用, 2024, 60(15): 344-354.
LUO Z Z, HAN Y K, ZHANG X, et al. Research on path planning of inspection robot with improved RRT-Connect and DWA algorithm[J]. Computer Engineering and Applications, 2024, 60(15): 344-354. |