计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 146-156.DOI: 10.3778/j.issn.1002-8331.2504-0158

• 路径规划专题 • 上一篇    下一篇

自适应步长双向RRT算法的机械臂避障路径规划研究

周志伟,孟祥印,王孜洲,张泽鸣,刘桓龙,文杰   

  1. 1.西南交通大学 唐山研究院,河北 唐山 063000
    2.西南交通大学 机械工程学院,成都 610000
  • 出版日期:2025-10-15 发布日期:2025-10-15

Research on Obstacle Avoidance Path Planning of Robotic Arm Based on Adaptive Step Size Bidirectional RRT Algorithm

ZHOU Zhiwei, MENG Xiangyin, WANG Zizhou, ZHANG Zeming, LIU Huanlong, WEN Jie   

  1. 1.Tangshan Research Institute, Southwest Jiaotong University, Tangshan, Hebei 063000, China
    2.School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610000, China
  • Online:2025-10-15 Published:2025-10-15

摘要: 针对标准RRT算法在路径规划时目标导向性差、收敛时间长、规划路径质量差等问题,提出了一种改进算法。读取地图信息,确定自适应初始步长,同时限制非障碍物空间为随机采样空间,结合双向目标偏置策略,增强采样点的目标导向性;采用自适应步长策略,栅格化待扩展节点周围空间,依据障碍物复杂程度自适应调整扩展步长,加速算法收敛;搜索完成后,对路径进行剪枝与优化,剔除冗余节点并在路径转折处创建新节点,提高路径质量。在不同的二维、三维环境中对改进算法进行仿真实验,仿真结果表明,改进算法在规划时间、路径长度、路径节点数以及算法搜索时的碰撞检测次数方面均优于标准RRT算法、GB-RRT算法与RRT-Connect算法。同时进行AUBO-i5机械臂避障实验,实验结果进一步证明了改进算法的有效性。

关键词: 机械臂, 路径规划, 双向RRT算法, 目标偏置, 自适应步长

Abstract: In response to the issues of poor target orientation, long convergence time, and low path quality in traditional rapidly-exploring random tree (RRT) algorithms, an improved algorithm is proposed. The algorithm first reads the map information and determines an adaptive initial step size, while restricting non-obstacle spaces to a random sampling space. A bidirectional goal bias strategy is incorporated to enhance the target orientation of the sampled points. Next, an adaptive step size strategy is employed, where the surrounding space of the nodes to be expanded is discretized. The expansion step size is adaptively adjusted based on the complexity of the obstacles, thus accelerating the algorithm’s convergence. After the search is completed, the path is pruned and optimized by removing redundant nodes and adding new nodes at path turning points to improve the path quality. Finally, the improved algorithm is tested in various two-dimensional and three-dimensional environments through simulation experiments. The results indicate that the improved algorithm outperforms the standard RRT algorithm, the GB-RRT algorithm, and the RRT-Connect algorithm in terms of planning time, path length, number of path nodes, and collision detection counts during the search process. Additionally, the obstacle avoidance simulation experiment with the AUBO-i5 robotic arm further validates the effectiveness of the proposed algorithm.

Key words: robotic arm, path planning, bidirectional RRT algorithm, goal bias, adaptive step size