计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (23): 316-328.DOI: 10.3778/j.issn.1002-8331.2407-0323

• 工程与应用 • 上一篇    下一篇

机巢充电情形下无人机电力巡检路径规划的强化遗传算法

梁晨蕾,罗贺,蒋儒浩,阴酉龙,林世忠,王国强   

  1. 1.合肥工业大学 管理学院,合肥 230009 
    2.国网安徽省电力有限公司 无人机巡检作业管理中心,合肥 230061
    3.安徽送变电工程有限公司,合肥 230071
    4.过程优化与智能决策教育部重点实验室,合肥 230009
    5.安徽省空天系统智能管理工程研究中心,合肥 230009
  • 出版日期:2025-12-01 发布日期:2025-12-01

Reinforcement Genetic Algorithm for Path Planning of UAV Power Inspection with Nest Charging

LIANG Chenlei, LUO He, JIANG Ruhao, YIN Youlong, LIN Shizhong, WANG Guoqiang   

  1. 1.School of Management, Hefei University of Technology, Hefei 230009, China
    2.Management Center of UAV Inspection Operation, State Grid Anhui Electric Power Co., Ltd., Hefei 230061, China
    3.Anhui Power Transmission & Transformation Engineering Co., Ltd., Hefei 230071, China
    4.Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009, China
    5.Engineering Research Center for Intelligent Management of Aerospace System, Anhui Province, Hefei 230009, China
  • Online:2025-12-01 Published:2025-12-01

摘要: 针对以机巢为充电站的无人机电力巡检路径规划问题,以最小化无人机执行任务总时间为目标构建数学模型,设计了一种强化遗传算法来求解该问题。在该算法中,提出了基于贪婪的种群初始化算子和基于split的可行解生成算子,并将遗传算法参数调优过程建模为马尔科夫决策过程,基于强化学习double Q-learning设计了交叉概率和变异概率的动态调优策略。在数值实验中,与Gurobi求解器、经典遗传算法、基于精英保留的遗传算法、差分进化算法的对比结果表明,该算法在求解质量和求解速度方面均具有显著优势;在案例分析中与现有巡检策略进行对比进一步验证了该算法在实际场景中的应用效果。

关键词: 电力巡检, 无人机(UAV), 充电续航, 路径规划, 双Q学习, 强化遗传算法, 参数调优

Abstract: Aiming at the path planning problem of UAV power inspection with the machine nest as the charging station, a mathematical model is constructed to minimize the total time of UAV task execution, and a reinforcement genetic algorithm is designed to solve the problem. In this algorithm, a population initialization operator based on greed and a feasible solution generation operator based on split are proposed, and the parameter tuning process of genetic algorithm is modeled as a Markov decision process, and a dynamic tuning strategy of cross probability and mutation probability is designed based on double Q-learning. In numerical experiments, the results of comparison with Gurobi solver, classical genetic algorithm, genetic algorithm based on elite retention and differential evolution algorithm show that the algorithm has significant advantages in solving quality and solving speed. At the same time, in the case analysis, the comparison with the existing inspection strategy further verifies the application effect of the algorithm in the actual scene.

Key words: power inspection, unmanned aerial vehicle (UAV), charge and continue flying, route planning, double Q-learning, reinforcement genetic algorithm, parameter tuning