[1] 毕竟, 刘俊. 结合DC-A*与FE-DWA的巡检机器人路径规划方法[J/OL]. 计算机工程与应用, 2025: 1-16 (2025-04-28)[2025-06-10]. https://kns.cnki.net/kcms/detail/11.2127.TP.20250428. 1440.016.html.
BI J, LIU J. A path planning method for inspection robots combining DC-A* and FE-DWA[J/OL]. Computer Engineering and Applications, 2025: 1-16(2025-04-28)[2025-06-10]. https://kns.cnki.net/kcms/detail/11.2127.TP.20250428.1440.016.html.
[2] 陈林, 缪志强, 王祥科, 等. 自主飞行器技术及其在低空经济中的应用综述[J]. 机器人, 2025, 47(3): 470-496.
CHEN L, MIAO Z Q, WANG X K, et al. Overview on autonomous aircraft technology and its application to low-altitude economy[J]. Robot, 2025, 47(3): 470-496.
[3] LI Q H, WANG J H, LI H M, et al. Fast-RRT*: an improved motion planner for mobile robot in two-dimensional space[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2022, 17(2): 200-208.
[4] MENG Z J. Optimization path planning algorithm based on deep reinforcement learning[C]//Proceedings of the 2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing. Piscataway: IEEE, 2024: 872-876.
[5] 顾谦, 安琪, 张妙恬, 等. 基于改进RRT算法的机器人路径规划研究[J]. 组合机床与自动化加工技术, 2025(3): 204-208.
GU Q, AN Q, ZHANG M T, et al. Research on robot path planning based on improved RRT algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2025(3): 204-208.
[6] NOREEN I, KHAN A, HABIB Z. Optimal path planning using RRT* based approaches: a survey and future directions[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(11): 071114.
[7] ZHANG Y W, WANG R R, SONG C L, et al. An improved dynamic step size RRT algorithm in complex environments[C]//Proceedings of the 2021 33rd Chinese Control and Decision Conference. Piscataway: IEEE, 2021: 3835-3840.
[8] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2014: 2997-3004.
[9] 赖荣燊, 窦磊, 巫志勇, 等. 改进RRT*-Smart算法的移动机器人全局路径规划研究[J]. 计算机工程与应用, 2025, 61(13): 378-388.
LAI R S, DOU L, WU Z Y, et al. Research on global path planning for mobile robots with improved RRT*-smart algorithm[J]. Computer Engineering and Applications, 2025, 61(13): 378-388.
[10] SUMMERS T. Distributionally robust sampling-based motion planning under uncertainty[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2019: 6518-6523.
[11] YU S N, CHEN J K, LIU G Y, et al. SOF-RRT*: an improved path planning algorithm using spatial offset sampling[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106875.
[12] WU Z P, MENG Z J, ZHAO W L, et al. Fast-RRT: a RRT-based optimal path finding method[J]. Applied Sciences, 2021, 11(24): 11777.
[13] DONG X X, WANG Y J, FANG C, et al. FHQ-RRT*: an improved path planning algorithm for mobile robots to acquire high-quality paths faster[J]. Sensors, 2025, 25(7): 2189.
[14] 孙鹏飞, 么娆, 邹宸玮, 等. 基于改进RRT*算法的机械臂路径规划[J]. 智能计算机与应用, 2025, 15(4): 171-176.
SUN P F, YAO R, ZOU C W, et al. Path planning of manipulator based on improved RRT* algorithm[J]. Intelligent Computer and Applications, 2025, 15(4): 171-176.
[15] GUAN T, HAN Y, KONG M C, et al. An improved artificial potential field with RRT star algorithm for autonomous vehicle path planning[J]. Scientific Reports, 2025, 15: 16982.
[16] LEI S J, LI T Y, GAO X C, et al. Research on improved RRT path planning algorithm based on multi-strategy fusion[J]. Scientific Reports, 2025, 15: 13312.
[17] KUFFNER J J, LAVALLE S M. RRT-connect: an efficient approach to single-query path planning[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2002: 995-1001.
[18] JI H C, XIE H B, WANG C, et al. E-RRT*: path planning for hyper-redundant manipulators[J]. IEEE Robotics and Automation Letters, 2023, 8(12): 8128-8135.
[19] QI J Y, YUAN Q N, WANG C, et al. Path planning and collision avoidance based on the RRT*FN framework for a robotic manipulator in various scenarios[J]. Complex & Intelligent Systems, 2023, 9(6): 7475-7494.
[20] LI Y J, WEI W, GAO Y, et al. PQ-RRT*: an improved path planning algorithm for mobile robots[J]. Expert Systems with Applications, 2020, 152: 113425.
[21] CONG J P, HU J B, WANG Y Y, et al. FF-RRT*: a sampling-improved path planning algorithm for mobile robots against concave cavity obstacle[J]. Complex & Intelligent Systems, 2023, 9(6): 7249-7267.
[22] LIANG Y M, ZHAO H Y. CCPF-RRT*: an improved path planning algorithm with consideration of congestion[J]. Expert Systems with Applications, 2023, 228: 120403.
[23] GUO Y C, LIU X X, LIU X H, et al. FC-RRT*: an improved path planning algorithm for UAV in 3D complex environment[J]. ISPRS International Journal of Geo-Information, 2022, 11(2): 112.
[24] VINCE A. A framework for the greedy algorithm[J]. Discrete Applied Mathematics, 2002, 121(1/2/3): 247-260.
[25] 王智慧, 代永强, 刘欢. 基于自适应飞蛾扑火优化算法的三维路径规划[J]. 计算机应用研究, 2023, 40(1): 63-69.
WANG Z H, DAI Y Q, LIU H. 3D path planning based on adaptive moth-fiame optimization algorithm[J]. Application Research of Computers, 2023, 40(1): 63-69.
[26] SHANG E K, DAI B, NIE Y M, et al. An improved A-star based path planning algorithm for autonomous land vehicles[J]. International Journal of Advanced Robotic Systems, 2020, 17(5): 1729881420962263.
[27] MA B S, WEI C, HUANG Q, et al. APF-RRT*: an efficient sampling-based path planning method with the guidance of artificial potential field[C]//Proceedings of the 2023 9th International Conference on Mechatronics and Robotics Engineering. Piscataway: IEEE, 2023: 207-213.
[28] DAI J, ZHANG Y, DENG H. Novel potential guided bidirectional RRT* with direct connection strategy for path planning of redundant robot manipulators in joint space[J]. IEEE Transactions on Industrial Electronics, 2024, 71(3): 2737-2747.
[29] CONG K D, HU Y H, XU L, et al. Safe model predictive tracking with an improved APF-RRT* path planning for UGVs[C]//Proceedings of the 2023 IEEE International Conference on Unmanned Systems. Piscataway: IEEE, 2023: 1165-1170.
[30] ELBANHAWI M, SIMIC M, JAZAR R N. Continuous path smoothing for car-like robots using B-spline curves[J]. Journal of Intelligent & Robotic Systems, 2015, 80(1): 23-56.
[31] HUANG Y J, LI H, DAI Y, et al. A 3D path planning algorithm for UAVs based on an improved artificial potential field and bidirectional RRT[J]. Drones, 2024, 8(12): 760.
[32] YUAN L H, ZHAO J C, LI W H, et al. Improved informed-RRT* based path planning and trajectory optimization for mobile robots[J]. International Journal of Precision Engineering and Manufacturing, 2023, 24(3): 435-446.
[33] CHAO N, LIU Y K, XIA H, et al. Grid-based RRT for minimum dose walking path-planning in complex radioactive environments[J]. Annals of Nuclear Energy, 2018, 115: 73-82. |