[1] AMES W F. Numerical methods for partial differential equations[M]. 3rd ed. Boston: Academic Press, 1992.
[2] LU Y, LU J. A universal approximation theor- em of deep neural networks for expressing probability distributions[C]//Advances in Neural Information Processing Systems, 2020: 3094-3105.
[3] HORNIK K, STINCHCOMBE M, WHITE H. Universal appro-ximation of an unknown mapping and its derivatives using multilayer feedforward networks[J]. Neural Networks, 1990, 3(5): 551-560.
[4] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for sol-ving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
[5] RALL L B. Automatic differentiation: techniques and applications[M]. Berlin: Springer-Verlag, 1981.
[6] JAGTAP A D, KAWAGUCHI K, KARNIADAKIS G E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks[J]. Journal of Computational Physics, 2020, 404: 109136.
[7] JAGTAP A D, KAWAGUCHI K, EM KARNIADAKIS G. Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476: 20200334.
[8] JIN X W, CAI S Z, LI H, et al. NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951.
[9] ZHENG Q, ZENG L Z, KARNIADAKIS G E. Physics-informed semantic inpainting: application to geostatistical modeling[J]. Journal of Computational Physics, 2020, 419: 109676.
[10] XIAO L S, LI P, SUN F L, et al. Development and validation of a deep learning-based model using computed tomography imaging for predicting disease severity of coronavirus disease 2019[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 898.
[11] ANAGNOSTOPOULOS S J, TOSCANO J D, STERGIOPULOS N, et al. Residual-based attention in physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 421: 116805.
[12] WIGHT C L, ZHAO J. Solving Allen-cahn and cahn-Hilliard equations using the adaptive physics informed neural networks[J] arXiv:2007.04542, 2020.
[13] 邓书超, 宋孝天, 钟旻霄, 等. 一种求解偏微分方程的动态平衡物理信息神经网络[J]. 中国科学: 信息科学, 2024, 54(8): 1843-1859.
DENG S C, SONG X T, ZHONG M X, et al. A dynamic balanced physical information neural network for solving partial differential equations[J]. Scientia Sinica: Informationis, 2024, 54(8): 1843-1859.
[14] WANG S F, TENG Y J, PERDIKARIS P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2021, 43(5): 3055-3081.
[15] MADDU S, STURM D, MüLLER C L, et al. Inverse Dirichlet weighting enables reliable training of physics informed neural networks[J]. Machine Learning: Science and Technology, 2022, 3(1): 015026.
[16] VEMURI S K, DENZLER J. Gradient statistics-based multi-objective optimization in physics-informed neural networks[J]. Sensors, 2023, 23(21): 8665.
[17] WANG S F, YU X L, PERDIKARIS P. When and why PINNs fail to train: a neural tangent kernel perspective[J]. Journal of Computational Physics, 2022, 449: 110768.
[18] XIANG Z X, PENG W, LIU X, et al. Self-adaptive loss balanced physics-informed neural networks[J]. Neurocomputing, 2022, 496: 11-34.
[19] MCCLENNY L D, BRAGA-NETO U M. Self-adaptive physics-informed neural networks[J]. Journal of Computational Physics, 2023, 474: 111722.
[20] BASIR S, SENOCAK I. Physics and equality constrained artificial neural networks: application to forward and inverse problems with multi-fidelity data fusion[J]. Journal of Computational Physics, 2022, 463: 111301.
[21] BASIR S, SENOCAK I. An adaptive augmented Lagrangian method for training physics and equality constrained artificial neural networks[J]. arXiv:2306.04904, 2023.
[22] SON H, CHO S W, HWANG H J. Enhanced physics-informed neural networks with augmented Lagrangian relaxation met-hod (AL-PINNs)[J]. Neurocomputing, 2023, 548: 126424.
[23] WANG Y, YAO Y Z, GUO J W, et al. A practical PINN framework for multi-scale problems with multi-magnitude loss terms[J]. Journal of Computational Physics, 2024, 510: 113112.
[24] 李野, 陈松灿. 基于物理信息的神经网络: 最新进展与展望[J]. 计算机科学, 2022, 49(4): 254-262.
LI Y, CHEN S C. Physics-informed neural networks: recent advances and prospects[J]. Computer Science, 2022, 49(4): 254-262.
[25] BOTTOU L. Large-scale machine learning with stochastic gradient descent[C]//Proceedings of the 19th International Con-ference on Computational Statistics Paris France(COMPSTAT’2010). Cham: Springer, 2010: 177-186.
[26] KINGA D, ADAM J B. A method for stocha-stic optimization[C]//Proceedings of the International Conference on Learning Representations (ICLR), 2015.
[27] BYRD R H, LU P H, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208.
[28] BERTSEKAS D P. Multiplier methods: a survey[J]. Automatica, 1976, 12(2): 133-145.
[29] NANDWANI Y, PATHAK A, SINGLA P. A primal dual formulation for deep learning with constraints[C]//Advances in Neural Information Processing Systems, 2019: 12157-12168.
[30] SANGALLI S, ERDIL E, H?TKER A, et al. Constrained optimization to train neural network- s on critical and under-represented classes[C]//Advances in Neural Information Processing Systems, 2021: 25400-25411.
[31] FIORETTO F, VAN HENTENRYCK P, MAK T W K, et al. Lagrangian duality for constrained deep learning[C]//Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2021: 118-135.
[32] GLOROT X, BENGIO Y. Understanding the difficulty of tra-ining deep feedforward neural ne-tworks[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010: 249-256.
[33] BASDEVANT C, DEVILLE M, HALDENWANG P, et al. Spectral and finite difference solutions of the Burgers equation[J]. Computers & Fluids, 1986, 14(1): 23-41.
[34] LI J, FENG Z, SCHUSTER G. Wave-equation dispersion inversion[J]. Geophysical Journal International, 2017, 208(3): 1567-1578. |