
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 43-59.DOI: 10.3778/j.issn.1002-8331.2502-0144
张大伟,王炫,何小卫,郑忠龙
出版日期:2025-10-01
发布日期:2025-09-30
ZHANG Dawei, WANG Xuan, HE Xiaowei, ZHENG Zhonglong
Online:2025-10-01
Published:2025-09-30
摘要: 目标跟踪是计算机视觉领域的一项重要任务,其中单目标跟踪是指在给定的视频序列中持续跟踪单个目标。然而可见光图像的成像依赖于光照条件,仅凭可见光信息难以满足低光照、雨雾天气等复杂恶劣环境下的目标跟踪。RGBT(RGB-thermal)目标跟踪是指结合热红外与可见光图像数据,利用双方互补优势共同实现跟踪任务,以提高跟踪的鲁棒性和准确性。随着深度学习的发展,目前RGBT目标跟踪领域研究成果众多,但现有大部分综述缺乏对近几年新兴的多模态融合研究前沿的介绍与总结。介绍了RGBT目标跟踪的概念与面临的挑战,将现有算法分为五大类进行梳理与分析,总结了当前主流的RGBT目标跟踪数据集与评价指标,并提供了各种跟踪算法在主流数据集上的性能对比,供研究人员参考,探讨了RGBT目标跟踪亟待解决的问题和潜在的研究方向,以期推动跟踪领域的进一步发展。
张大伟, 王炫, 何小卫, 郑忠龙. 基于深度学习的RGBT目标跟踪研究进展[J]. 计算机工程与应用, 2025, 61(19): 43-59.
ZHANG Dawei, WANG Xuan, HE Xiaowei, ZHENG Zhonglong. Research Progress of RGBT Object Tracking Based on Deep Learning[J]. Computer Engineering and Applications, 2025, 61(19): 43-59.
| [1] XU R H, NIKOUEI S Y, CHEN Y, et al. Real-time human objects tracking for smart surveillance at the edge[C]//Proceedings of the 2018 IEEE International Conference on Communications. Piscataway: IEEE, 2018: 1-6. [2] HUANG M Z, NARASIMHASWAMY S, VAZIR S, et al. Forward propagation, backward regression, and pose association for hand tracking in the wild[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 6396-6406. [3] AZIMJONOV J, ?ZMEN A. A real-time vehicle detection and a novel vehicle tracking systems for estimating and monitoring traffic flow on highways[J]. Advanced Engineering Informatics, 2021, 50: 101393. [4] DAI X R, YUAN X, WEI X Y. TIRNet: object detection in thermal infrared images for autonomous driving[J]. Applied Intelligence, 2021, 51(3): 1244-1261. [5] 孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244-1260. MENG L, YANG X. A survey of object tracking algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244-1260. [6] VASWANI A. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017. [7] CONAIRE C ó, O’CONNOR N E, SMEATON A. Thermo-visual feature fusion for object tracking using multiple spatiogram trackers[J]. Machine Vision and Applications, 2008, 19(5): 483-494. [8] FENG M Z, SU J B. RGBT tracking: a comprehensive review[J]. Information Fusion, 2024, 110: 102492. [9] ZHANG H P, YUAN D, SHU X, et al. A comprehensive review of RGBT tracking[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5027223. [10] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4293-4302. [11] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision Workshops. Berlin: Springer, 2016: 850-865. [12] LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8971-8980. [13] XU Y D, WANG Z Y, LI Z X, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12549-12556. [14] YAN B, PENG H W, FU J L, et al. Learning spatio-temporal transformer for visual tracking[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10428-10437. [15] CHEN X, YAN B, ZHU J W, et al. Transformer tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8122-8131. [16] WANG N, ZHOU W G, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1571-1580. [17] GOPAL G Y, AMER M A. Separable self and mixed attention transformers for efficient object tracking[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 6694-6703. [18] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]//Proceedings of the International Conference on Learning Representations, 2021. [19] LIN L T, FAN H, ZHANG Z, et al. SwinTrack: a simple and strong baseline for transformer tracking[C]//Advances in Neural Information Processing Systems, 2022: 16743-16754. [20] CUI Y T, JIANG C, WANG L M, et al. MixFormer: end-to-end tracking with iterative mixed attention[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13598-13608. [21] YE B T, CHANG H, MA B P, et al. Joint feature learning and relation modeling for tracking: a one-stream framework[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2022: 341-357. [22] XIE F, CHU L, LI J H, et al. VideoTrack: learning to track objects via video transformer[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 22826-22835. [23] CHEN X, PENG H W, WANG D, et al. SeqTrack: sequence to sequence learning for visual object tracking[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14572-14581. [24] WEI X, BAI Y F, ZHENG Y C, et al. Autoregressive visual tracking[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9697-9706. [25] BAI Y F, ZHAO Z Y, GONG Y H, et al. ARTrackV2: prompting autoregressive tracker where to look and how to describe[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 19048-19057. [26] YUAN D, ZHANG H P, SHU X, et al. Thermal infrared target tracking: a comprehensive review[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 73: 5000419. [27] LI X, LIU Q, FAN N N, et al. Hierarchical spatial-aware Siamese network for thermal infrared object tracking[J]. Knowledge-Based Systems, 2019, 166: 71-81. [28] LIU Q, YUAN D, FAN N N, et al. Learning dual-level deep representation for thermal infrared tracking[J]. IEEE Transactions on Multimedia, 2022, 25: 1269-1281. [29] YANG C, LIU Q, LI G J, et al. Learning diverse fine-grained features for thermal infrared tracking[J]. Expert Systems with Applications, 2024, 238: 121577. [30] LI C L, XUE W L, JIA Y Q, et al. LasHeR: a large-scale high-diversity benchmark for RGBT tracking[J]. IEEE Transactions on Image Processing, 2021, 31: 392-404. [31] 欧洲, 应舸, 张大伟, 等. RGB-D目标跟踪综述[J]. 计算机辅助设计与图形学学报, 2024, 36(11): 1673-1690. OU Z, YING G, ZHANG D W, et al. A survey of RGB-depth object tracking[J]. Journal of Computer-Aided Design & Computer Graphics, 2024, 36(11): 1673-1690. [32] KRISTAN M, MATAS J, LEONARDIS A, et al. The seventh visual object tracking VOT2019 challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 2206-2241. [33] LI Z Y, TAO R, GAVVES E, et al. Tracking by natural language specification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7350-7358. [34] ZHANG P Y, ZHAO J, WANG D, et al. Visible-thermal UAV tracking: a large-scale benchmark and new baseline[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8876-8885. [35] LI C, LIU L, LU A, et al. Challenge-aware RGBT tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2020: 222-237. [36] LIU L, LI C L, XIAO Y, et al. RGBT tracking via challenge-based appearance disentanglement and interaction[J]. IEEE Transactions on Image Processing, 2024, 33: 1753-1767. [37] ZHANG P Y, ZHAO J, BO C J, et al. Jointly modeling motion and appearance cues for robust RGB-T tracking[J]. IEEE Transactions on Image Processing, 2021, 30: 3335-3347. [38] LAURENT L S, PREVOST D, MALDAGUE X P V. Context-independant video monitoring of mobile objects with color/thermal sensor[C]//Proceedings of the Optics and Photonics for Counterterrorism and Crime Fighting, 2004: 16-25. [39] CVEJIC N, NIKOLOV S G, KNOWLES H D, et al. The effect of pixel-level fusion on object tracking in multi-sensor surveillance video[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2007: 1-7. [40] LI C L, CHENG H, HU S Y, et al. Learning collaborative sparse representation for grayscale-thermal tracking[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5743-5756. [41] LI C L, WANG X, ZHANG L, et al. Weighted low-rank decomposition for robust grayscale-thermal foreground detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(4): 725-738. [42] LI C L, WU X H, ZHAO N, et al. Fusing two-stream convolutional neural networks for RGB-T object tracking[J]. Neurocomputing, 2018, 281: 78-85. [43] ZHANG X C, YE P, PENG S Y, et al. SiamFT: an RGB-infrared fusion tracking method via fully convolutional Siamese networks[J]. IEEE Access, 2019, 7: 122122-122133. [44] ZHANG X M, ZHANG X H, DU X D, et al. Learning multi-domain convolutional network for RGB-T visual tracking[C]//Proceedings of the 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway: IEEE, 2018: 1-6. [45] ZHU Y B, LI C L, LUO B, et al. Dense feature aggregation and pruning for RGBT tracking[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 465-472. [46] GAO Y, LI C L, ZHU Y B, et al. Deep adaptive fusion network for high performance RGBT tracking[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 91-99. [47] LI C L, LU A D, ZHENG A H, et al. Multi-adapter RGBT tracking[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 2262-2270. [48] ZHANG H, ZHANG L, ZHUO L, et al. Object tracking in RGB-T videos using modal-aware attention network and competitive learning[J]. Sensors, 2020, 20(2): 393. [49] ZHU Y B, LI C L, TANG J, et al. Quality-aware feature aggregation network for robust RGBT tracking[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(1): 121-130. [50] PENG J C, ZHAO H T, HU Z W. Dynamic fusion network for RGBT tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 3822-3832. [51] PENG J C, ZHAO H T, HU Z W, et al. Siamese infrared and visible light fusion network for RGB-T tracking[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(9): 3281-3293. [52] XIAO X B, XIONG X Z, MENG F Q, et al. Multi-scale feature interactive fusion network for RGBT tracking[J]. Sensors, 2023, 23(7): 3410. [53] YANG Y, LIANG H, YANG Y, et al. Cross-modal attention network for RGB-T tracking[C]//Proceedings of the 2021 3rd International Conference on Advances in Computer Technology, Information Science and Communication. Piscataway: IEEE, 2021: 341-346. [54] FENG M Z, SU J B. Learning reliable modal weight with transformer for robust RGBT tracking[J]. Knowledge-Based Systems, 2022, 249: 108945. [55] ZHANG T L, GUO H Y, JIAO Q, et al. Efficient RGB-T tracking via cross-modality distillation[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 5404-5413. [56] XIAO Y, YANG M M, LI C L, et al. Attribute-based progressive fusion network for RGBT tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(3): 2831-2838. [57] FENG M Z, SU J B. RGBT image fusion tracking via sparse trifurcate transformer aggregation network[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5010410. [58] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [59] ZHANG J M, QIN Y, FAN S M, et al. SiamTFA: Siamese triple-stream feature aggregation network for efficient RGBT tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(2): 1900-1913. [60] LU A, WANG W, LI C, et al. AFter: attention-based fusion router for RGBT tracking[J]. arXiv:2405.02717, 2024. [61] WANG H, XU T Y, TANG Z Y, et al. Multi-modal adapter for RGB-T tracking[J]. Information Fusion, 2025, 118: 102940. [62] LUO Y, GUO X, DONG M, et al. RGB-T tracking based on mixed attention[J]. arXiv:2304.04264, 2023. [63] YU Z C, FAN H J, WANG Q, et al. Region selective fusion network for robust RGB-T tracking[J]. IEEE Signal Processing Letters, 2023, 30: 1357-1361. [64] WANG F T, WANG W Q, LIU L, et al. Siamese transformer RGBT tracking[J]. Applied Intelligence, 2023, 53(21): 24709-24723. [65] HUI T R, XUN Z Z, PENG F G, et al. Bridging search region interaction with template for RGB-T tracking[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 13630-13639. [66] HU X T, ZHONG B N, LIANG Q H, et al. Toward modalities correlation for RGB-T tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(10): 9102-9111. [67] WANG H Y, LIU X T, LI Y F, et al. Temporal adaptive RGBT tracking with modality prompt[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(6): 5436-5444. [68] SUN D D, PAN Y J, LU A D, et al. Transformer RGBT tracking with spatio-temporal multimodal tokens[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(11): 12059-12072. [69] TANG Z Y, XU T Y, WU X J, et al. Generative-based fusion mechanism for multi-modal tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(6): 5189-5197. [70] XIAO Y, ZHAO J C, LU A D, et al. Cross-modulated attention transformer for RGBT tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2025, 39(8): 8682-8690. [71] XIA J Q, SHI D X, SONG K, et al. Unified single-stage transformer network for efficient RGB-T tracking[C]//Proceedings of the 33rd International Joint Conference on Artificial Intelligence, 2024: 1471-1479. [72] CHEN X, KANG B, GENG W T, et al. SUTrack: towards simple and unified single object tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2025, 39(2): 2239-2247. [73] YANG J Y, LI Z, ZHENG F, et al. Prompting for multi-modal tracking[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 3492-3500. [74] ZHU J W, LAI S M, CHEN X, et al. Visual prompt multi-modal tracking[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9516-9526. [75] HOU X J, XING J Z, QIAN Y J, et al. SDSTrack: self-distillation symmetric adapter learning for multi-modal visual object tracking[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 26541-26551. [76] HONG L Y, YAN S L, ZHANG R R, et al. OneTracker: unifying visual object tracking with foundation models and efficient tuning[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 19079-19091. [77] LIU Y S, GAO Z, CAO Y, et al. Two-stage unidirectional fusion network for RGBT tracking[J]. Knowledge-Based Systems, 2025, 310: 112983. [78] CAO B, GUO J L, ZHU P F, et al. Bi-directional adapter for multimodal tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(2): 927-935. [79] WANG Q M, BAI Y Q, SONG H X. Middle fusion and multi-stage, multi-form prompts for robust RGB-T tracking[J]. Neurocomputing, 2024, 596: 127959. [80] WU Z W, ZHENG J L, REN X X, et al. Single-model and any-modality for video object tracking[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 19156-19166. [81] ZHANG L C, DANELLJAN M, GONZALEZ-GARCIA A, et al. Multi-modal fusion for end-to-end RGB-T tracking[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 2252-2261. [82] DAVIS J W, SHARMA V. Background-subtraction using contour-based fusion of thermal and visible imagery[J]. Computer Vision and Image Understanding, 2007, 106(2/3): 162-182. [83] LI C L, ZHAO N, LU Y J, et al. Weighted sparse representation regularized graph learning for RGB-T object tracking[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 1856-1864. [84] LI C L, LIANG X Y, LU Y J, et al. RGB-T object tracking: benchmark and baseline[J]. Pattern Recognition, 2019, 96: 106977. [85] WU Y, LIM J, YANG M H. Online object tracking: a benchmark[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 2411-2418. [86] MüLLER M, BIBI A, GIANCOLA S, et al. TrackingNet: a large-scale dataset and benchmark for object tracking in the wild[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 300-317. [87] KRISTAN M, LEONARDIS A, MATAS J, et al. The eighth visual object tracking VOT2020 challenge results[C]//Proceedings of the European Conference on Computer Vision Workshops. Berlin: Springer, 2020: 547-601. [88] ?EHOVIN L, KRISTAN M, LEONARDIS A. Is my new tracker really better than yours?[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2014: 540-547. [89] KRISTAN M, PFLUGFELDER R, LEONARDIS A, et al. The visual object tracking VOT2013 challenge results[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2013: 98-111. [90] KRISTAN M, MATAS J, LEONARDIS A, et al. The visual object tracking VOT2015 challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2015: 1-23. [91] BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6181-6190. [92] ZHANG L C, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Synthetic data generation for end-to-end thermal infrared tracking[J]. IEEE Transactions on Image Processing, 2019, 28(4): 1837-1850. [93] ZHANG Z P, PENG H W. Deeper and wider Siamese networks for real-time visual tracking[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4586-4595. [94] LAI S M, LIU C, ZHU J W, et al. MambaVT: spatio-temporal contextual modeling for robust RGB-T tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, PP(99): 1. [95] LU A D, WANG W Y, LI C L, et al. RGBT tracking via all-layer multimodal interactions with progressive fusion mamba[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2025, 39(6): 5793-5801. [96] ZHANG X C, YE P, LEUNG H, et al. Object fusion tracking based on visible and infrared images: a comprehensive review[J]. Information Fusion, 2020, 63: 166-187. [97] TU Z Z, LI Z, LI C L, et al. Weakly alignment-free RGBT salient object detection with deep correlation network[J]. IEEE Transactions on Image Processing, 2022, 31: 3752-3764. [98] SONG K C, ZHAO Y, HUANG L M, et al. RGB-T image analysis technology and application: a survey[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105919. [99] GU A, DAO T. Mamba: linear-time sequence modeling with selective state spaces[J]. arXiv:2312.00752, 2023. [100] ZHU L, LIAO B, ZHANG Q, et al. Vision mamba: efficient visual representation learning with bidirectional state space model[J]. arXiv:2401.09417, 2024. [101] LIU Y, TIAN Y, ZHAO Y, et al. VMamba: visual state space model[C]//Advances in Neural Information Processing Systems, 2024: 103031-103063. [102] LI S F, SINGH H, GROVER A. Mamba-ND: selective state space modeling for multi-dimensional data[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2024: 75-92. [103] ZHANG P Y, WANG D, LU H C, et al. Learning adaptive attribute-driven representation for real-time RGB-T tracking[J]. International Journal of Computer Vision, 2021, 129(9): 2714-2729. |
| [1] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [2] | 郝鹤菲, 张龙豪, 崔洪振, 朱宵月, 彭云峰, 李向晖. 深度神经网络在人体姿态估计中的应用综述[J]. 计算机工程与应用, 2025, 61(9): 41-60. |
| [3] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [4] | 赵海涛, 岳希, 唐聃, 蔡博. 改进TransCenter的组合距离多目标跟踪方法[J]. 计算机工程与应用, 2025, 61(9): 177-185. |
| [5] | 李宗民, 杨少波, 王君伍. 结合检测修复和特征平滑更新的多目标追踪[J]. 计算机工程与应用, 2025, 61(9): 202-210. |
| [6] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [7] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [8] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [9] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [10] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [11] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [12] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [13] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [14] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [15] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||