计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 60-73.DOI: 10.3778/j.issn.1002-8331.2409-0258

• 热点与综述 • 上一篇    下一篇

方面级情感分析研究综述

徐放,尹伊纯,吴方君   

  1. 江西财经大学 计算机与人工智能学院,南昌 330032
  • 出版日期:2025-10-01 发布日期:2025-09-30

Survey on Aspect-Based Sentiment Analysis

XU Fang, YIN Yichun, WU Fangjun   

  1. School of Computer and Artificial Intelligence, Jiangxi University of Finance and Economics, Nanchang 330032, China
  • Online:2025-10-01 Published:2025-09-30

摘要: 随着情感分析的不断发展,提出了侧重于对评价对象及其属性进行细粒度情感分析的方面级情感分析,受到了研究者越来越多的关注。与传统的情感分析相比,方面级情感分析能够准确地反映评价对象及其意见,帮助企业有针对性地改进,助力企业高质量发展。根据使用方法的不同,将其划分为基于规则的方法、基于注意力的方法、基于机器阅读理解的方法、基于序列标注的方法以及基于生成的方法,并对现有的文献进行了分析和总结;介绍方面级情感分析的新任务:多模态、隐式和跨领域方面级情感分析;给出了常用数据资源,如SemEval系列、MAMS、ACOS和CMU-MOSEI;对面临的挑战和未来的研究方向进行了探讨,指出需要解决数据量小、领域单一、数据质量难以评估的问题,加强对复杂语句和多模态的方面级情感分析,如何更好地利用预训练语言模型为更深入的研究提供思路。

关键词: 机器学习, 深度学习, 方面级情感分析

Abstract: With the continuous development of the sentiment analysis, aspect-based sentiment analysis (ABSA) is proposed, which is an analytical method that focuses on analyzing the evaluated object and its attributes. ABSA has received increasing attention. Compared with traditional sentiment analysis, ABSA can accurately reflect the evaluated aspect and its opinions, helping enterprises make targeted improvements and promote high-quality development. According to different methods, they can be divided into rule-based methods, attention based methods, machine reading comprehension based methods, sequence annotation based methods, and generative based methods. Existing research is analyzed and summarized. In addition, this paper also introduces new tasks in ABSA:multimodal, implicit, and cross-domain aspect-based sentiment analysis; provides common data resources such as SemEval series, MAMS, ACOS, and CMU-MOSEI. Finally, this paper explores the challenges faced and future research directions, such as small data volumes, single domains, and unevaluable data quality. It emphasizes the importance of enhancing aspect-based sentiment analysis for complex sentences and multimodal contexts, and explores how to better leverage pre-trained language models to provide insights for more in-depth research.

Key words: machine learning, deep learning, aspect-based sentiment analysis