[1] QIU J, CUI Z, ZHANG Y, et al. DeepLiDAR: deep surface normal guided depth prediction for outdoor scene from sparse LiDAR data and single color image[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE Computer Society Press, 2019: 3313-3322.
[2] LIU Y P, YANG Q, XU Y L, et al. Point cloud quality assessment: dataset construction and learning-based no-reference metric[J]. ACM Transactions on Multimedia Computing, Communications,and Applications, 2023, 19(2): 1-26.
[3] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE Computer Society Press, 2018: 4558-4567.
[4] LIU Y F, YAN J J, JIA F, et al. PETRv2: a unified framework for 3D perception from multi-camera images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 3239-3249.
[5] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[6] 李娇娇,孙红岩,董雨, 等. 基于深度学习的3维点云处理综述[J]. 计算机研究与发展, 2022, 59(5): 1160-1179.
LI J J, SUN H Y, DONG Y, et al. Survey of 3D dimensional point cloud processing based on deep learning[J]. Journal of Computer Research and Development, 2022, 59(5): 1160-1179.
[7] YANG G D, MENTASTI S, BERSANI M, et al. LiDAR point-cloud processing based on projection methods: a comparison[C]//Proceedings of the AEIT International Conference of Electrical and Electronic Technologies for Automotive. Piscataway: IEEE, 2020: 1-6.
[8] CHARLES R,HAO S U, KAICHUN M, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE Computer Society Press, 2017: 652-660.
[9] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE Computer Society Press, 2018: 4490-4499.
[10] HUI L, WANG L P, CHEN M M, et al. 3D Siamese voxel-to-BEV tracker for sparse point clouds[C]//Proceedings of the Neural Information Processing Systems. Beijing: MIT Press, 2021:?28714-28727.
[11] 吕卓, 姚治成, 贾玉祥, 等. 3D物体检测的异构方法[J]. 计算机研究与发展, 2021, 58(12): 2748-2759.
LV Z, YAO Z C, JIA Y X, et al. A heterogeneous approach for 3D object detection[J]. Journal of Computer Research and Development, 2021, 58(12): 2748-2759.
[12] 李晓光, 付陈平, 李晓莉, 等. 面向多尺度目标检测的改进Faster R-CNN算法[J]. 计算机辅助设计与图形学学报, 2019, 31(7): 1095-1101.
LI X G, FU C P, LI X L, et al. Improved faster R-CNN for multi-scale object detection[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(7): 1095-1101.
[13] 黄健宸, 王晗, 卢昊. 结合轻量化骨干与多尺度融合的单阶段检测器[J]. 中国图象图形学报, 2022, 27(12): 3596-3607.
HUANG J C, WANG H, LU H. One-stage detectors combining lightweight backbone and multi-scale fusion[J]. Journal of Image and Graphics, 2022, 27(12): 3596-3607.
[14] 孙建波, 张叶, 常旭岭. 基于改进Mask R-CNN+LaneNet的车载图像车辆压线检测[J]. 光学精密工程, 2022. 30(7): 854-868.
SUN J B, ZHANG Y, CHANG X L. Vehicle pressure line detection based on improved Mask R-CNN+LaneNet[J].Optics and Precision Engineering, 2022, 30(7): 854-868.
[15] 徐歆恺, 马岩, 钱旭, 等. 自动驾驶场景的尺度感知实时行人检测[J]. 中国图象图形学报, 2021, 26(1): 93-100.
XU X K, MA Y, QIAN X, et al. Scale-aware EfficientDet: real-time pedestrian detection algorithm for automated driving[J]. Journal of Image and Graphics, 2021, 26(1): 93-100.
[16] BAI D, SUN Y, TAO B, et al. Improved single shot multibox detector target detection method based on deep feature fusion[J]. Concurrency and Computation: Practice and Experience, 2022, 34(4): e6614.
[17] 白静, 司庆龙, 秦飞巍. 轻量级实时点云分类网络LightPointNet[J]. 计算机辅助设计与图形学学报, 2019, 31(4): 612-621.
BAI J, SI Q L, QIN F W. Lightweight real-time point cloud classification network LightPointNet[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4): 612-621.
[18] SHENG H, CAI S, ZHAO N, et al. Rethinking IoU-based Optimization for single-stage 3D object detection[C]//Proceedings of European Conference on Computer Vision, 2022: 544-561.
[19] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS--improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE Computer Society Press, 2017: 5561-5569.
[20] RAMACHANDRAN P, VAROQUAUX G. Mayavi: 3D visualization of scientific data[J]. Computing in Science & Engineering, 2011, 13(2): 40-51.
[21] CVI?I? I, MARKOVI? I, PETROVI? I. Recalibrating the KITTI dataset camera setup for improved odometry accuracy[C]//Proceedings of the European Conference on Mobile Robots. Piscataway: IEEE, 2021: 1-6.
[22] 陈建文, 赵丽丽, 任蓝草, 等. 深度学习点云质量增强方法综述[J]. 中国图象图形学报, 2023, 28(11): 3295-3319.
CHEN J W, ZHAO L L, REN L C, et al. Deep learning-based quality enhancement for 3D point clouds: a survey[J]. Journal of Image and Graphics, 2023, 28(11): 3295-3319.
[23] YANG B, LUO W, RAQUEL U. Pixor: real-time 3D object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE Computer Society Press, 2018: 7652-7660.
[24] 田枫, 刘超, 刘芳, 等. 基于改进PointPillars的激光雷达三维目标检测[J]. 激光与光电子学进展, 2024, 61(8): 235-244.
TIAN F, LIU C, LIU F, et al. Laser radar 3D target detection based on improved PointPillars[J]. Laser & Optoelectronics Progress, 2024, 61(8): 235-244. |