[1] MERKLE D, REITERER A. Overview of 3D point cloud annotation and segmentation techniques for smart city applications[C]//Proceedings of SPIE Remote Sensing Technologies and Applications in Urban Environments VII, 2022: 10-18.
[2] ORTEGA S, SANTANA J M, WENDEL J, et al. Generating 3D city models from open LiDAR point clouds: advancing towards smart city applications[M]//Open source geospatial science for urban studies: the value of open geospatial data. Cham: Springer International Publishing, 2021: 97-116.
[3] 陈宇文, 徐照. 建筑全景三维机载雷达点云信息采集方法仿真[J]. 计算机仿真, 2024, 41(4): 270-273.
CHEN Y W, XU Z. Simulation of point cloud information collection method for building panoramic 3D airborne radar[J]. Computer Simulation, 2024, 41(4): 270-273.
[4] ZHOU W, BERRIO J S, WORRALL S, et al. Automated evaluation of semantic segmentation robustness for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1951-1963.
[5] DU J H, HUANG X C, XING M Y, et al. Improved 3D semantic segmentation model based on RGB image and LiDAR point cloud fusion for automantic driving[J]. International Journal of Automotive Technology, 2023, 24(3): 787-797.
[6] 杨咏嘉, 钟良琪, 闫胜业. 基于点云的自动驾驶下三维目标检测[J]. 计算机工程与设计, 2024, 45(4): 1093-1099.
YANG Y J, ZHONG L Q, YAN S Y. 3D object detection in automatic driving based on point cloud[J]. Computer Engineering and Design, 2024, 45(4): 1093-1099.
[7] YANG H, CHEN Y Y, LIU J X, et al. A 3D lidar SLAM system based on semantic segmentation for rubber-tapping robot[J]. Forests, 2023, 14(9): 1856.
[8] PU H Y, LUO J, WANG G, et al. Visual SLAM integration with semantic segmentation and deep learning: a review[J]. IEEE Sensors Journal, 2023, 23(19): 22119-22138.
[9] 高一, 王忠立, 王颖博. 基于不确定性建模的3D场景感知方法[J]. 机器人, 2024, 46(4): 450-464.
GAO Y, WANG Z L, WANG Y B. A 3D scene perception method based on uncertainty modeling[J]. Robot, 2024, 46(4): 450-464.
[10] 龚靖渝, 楼雨京, 柳奉奇, 等. 三维场景点云理解与重建技术[J]. 中国图象图形学报, 2023, 28(6): 1741-1766.
GONG J Y, LOU Y J, LIU F Q, et al. Scene point cloud understanding and reconstruction technologies in 3D space[J]. Journal of Image and Graphics, 2023, 28(6): 1741-1766.
[11] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3d shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015.
[12] MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2015: 922-928.
[13] MENG H Y, GAO L, LAI Y K, et al. VV-net: voxel VAE net with group convolutions for point cloud segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8499-8507.
[14] CHARLES R Q, HAO S, MO K C, et al. PointNet: deep lear-ning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85.
[15] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, 2017.
[16] ELDAR Y, LINDENBAUM M, PORAT M, et al. The farthest point strategy for progressive image sampling[J]. IEEE Transactions on Image Processing, 1997, 6(9): 1305-1315.
[17] MA X, QIN C, YOU H, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework[J]. arXiv:2202.07123, 2022.
[18] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
[19] LIN L, WANG G R, ZHANG R, et al. Deep structured scene parsing by learning with image descriptions[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2276-2284.
[20] WANG G H, ZHAI Q Y, LIU H. Cross self-attention network for 3D point cloud[J]. Knowledge-Based Systems, 2022, 247: 108769.
[21] ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1534-1543.
[22] QIU S, ANWAR S, BARNES N. Geometric back-projection network for point cloud classification[J]. IEEE Transactions on Multimedia, 2021, 24: 1943-1955.
[23] CHEN C, FRAGONARA L Z, TSOURDOS A. GAPointNet: graph attention based point neural network for exploiting local feature of point cloud[J]. Neurocomputing, 2021, 438: 122-132.
[24] YE X Q, LI J M, HUANG H X, et al. 3D recurrent neural networks with context fusion for point cloud semantic segmentation[C]// Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 415-430.
[25] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[26] HUANG Q G, WANG W Y, NEUMANN U. Recurrent slice networks for 3D segmentation of point clouds[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2626-2635.
[27] MOEIN PEYGHAMBARZADEH S M, AZIZMALAYERI F, KHOTANLOU H, et al. Point-PlaneNet: plane kernel based convolutional neural network for point clouds analysis[J]. Digital Signal Processing, 2020, 98: 102633.
[28] QIU S, ANWAR S, BARNES N. PnP-3D: a plug-and-play for 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 1312-1319.
[29] DING R Y, YANG J H, JIANG L, et al. DODA: data-oriented sim-to-real domain adaptation for3D semantic segmentation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2022: 284-303. |