[1] ZHANG C C, ZHANG K, NI R D, et al. Unleashing the potential of machine learning: an exploration of state-of-the-art algorithms and real-world applications in computer vision[C]//Proceedings of the 2023 Congress in Computer Science, Computer Engineering, & Applied Computing. Piscataway: IEEE, 2023: 422-425.
[2] YUAN T H, ZHANG P C, JIN H Y, et al. CNN-DBN: quality assessment and optimization of content-based image retrieval services[C]//Proceedings of the 2021 IEEE 12th International Conference on Software Engineering and Service Science. Piscataway: IEEE, 2021: 154-157.
[3] 苗博瑞, 许云峰, 赵少杰, 等. C-BGA: 结合对比学习的多模态语音情感识别网络[J]. 计算机工程与应用, 2024, 60(16): 168-176.
MIAO B R, XU Y F, ZHAO S J, et al. C-BGA: multimodal speech emotion recognition network combining contrastive lear-ning[J]. Computer Engineering and Applications, 2024, 60(16): 168-176.
[4] RESHMA R, JOSE ANAND A. Predictive and comparative analysis of LENET, ALEXNET and VGG-16 network architecture in smart behavior monitoring[C]//Proceedings of the 2023 Seventh International Conference on Image Information Processing. Piscataway: IEEE, 2023: 450-453.
[5] 黄英来, 姜忠良. 改进残差网络甜瓜叶片病害的识别研究[J]. 计算机工程与应用, 2024, 60(15): 189-197.
HUANG Y L, JIANG Z L. Research on identification of melon leaf diseases with improved residual network[J]. Computer Engineering and Applications, 2024, 60(15): 189-197.
[6] KHOT A. Image analysis using convolutional neural network to detect bird species[C]//Proceedings of the 7th International Conference on Computing in Engineering & Technology (ICCET 2022), 2022: 58-61.
[7] MATHKUNTI N M, ANANTHANAGU U, P M E. Brain disease Parkinson’s diagnosis using VGG-16 and VGG-19 with spiral and waves drawings as input[C]//Proceedings of the 2024 IEEE 9th International Conference for Convergence in Technology (I2CT). Piscataway: IEEE, 2024: 1-5.
[8] 郭朝鹏, 王馨昕, 仲昭晋, 等. 能耗优化的神经网络轻量化方法研究进展[J]. 计算机学报, 2023, 46(1): 85-102.
GUO C P, WANG X X, ZHONG Z J, et al. Research advance on neural network lightweight for energy optimization[J]. Chinese Journal of Computers, 2023, 46(1): 85-102.
[9] LEE W H, ROH S D, PARK S, et al. Direct conversion: accelerating convolutional neural networks utilizing sparse input activation[C]//Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2020: 441-446.
[10] ALBERICIO J, JUDD P, HETHERINGTON T, et al. Cnvlutin: ineffectual-neuron-free deep neural network computing[C]//Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture. Piscataway: IEEE, 2016: 1-13.
[11] SHAO H, LIU B, QIAN Y M. One-shot sensitivity-aware mixed sparsity pruning for large language models[C]//Proceedings of the ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 11296-11300.
[12] LIU B S, CHEN X M, HAN Y H, et al. Search-free accelerator for sparse convolutional neural networks[C]//Proceedings of the 2020 25th Asia and South Pacific Design Automation Conference. Piscataway: IEEE, 2020: 524-529.
[13] ZHANG S J, DU Z D, ZHANG L, et al. Cambricon-X: an accelerator for sparse neural networks[C]//Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture. Piscataway: IEEE, 2016: 1-12.
[14] HAN S, LIU X Y, MAO H Z, et al. EIE: efficient inference engine on compressed deep neural network[C]//Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture. Piscataway: IEEE, 2016: 243-254.
[15] PARASHAR A, RHU M, MUKKARA A, et al. SCNN: an accelerator for compressed-sparse convolutional neural networks[C]//Proceedings of the 44th Annual International Symposium on Computer Architecture. New York: ACM, 2017: 27-40.
[16] LU L Q, XIE J M, HUANG R R, et al. An efficient hardware accelerator for sparse convolutional neural networks on FPGAs[C]//Proceedings of the 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines. Piscataway: IEEE, 2019: 17-25.
[17] GUY Y, WANGY Y, ADEBISIZ B, et al. Blind signal recognition method of STBC based on multi-channel convolutional neural network[C]//Proceedings of the 2022 IEEE 96th Vehicular Technology Conference. Piscataway: IEEE, 2022: 1-5.
[18] SRIDHARAN A, ZHANG F, SEO J S, et al. SP-IMC: a sparsity aware in-memory-computing macro in 28 nm CMOS with configurable sparse representation for highly sparse DNN workloads[C]//Proceedings of the 2024 IEEE Custom Integrated Circuits Conference. Piscataway: IEEE, 2024: 1-2.
[19] 涂坤, 熊凤超, 傅冠夷蛮, 等. 多任务的高光谱图像卷积稀疏编码去噪网络[J]. 中国图象图形学报, 2024, 29(1): 280-292.
TU K, XIONG F C, FU G Y M, et al. Multitask hyperspectral image convolutional sparse coding-denoising network[J]. Journal of Image and Graphics, 2024, 29(1): 280-292.
[20] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856.
[21] ZHU C Y, HUANG K J, YANG S Y, et al. An efficient hardware accelerator for structured sparse convolutional neural networks on FPGAs[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(9): 1953-1965.
[22] 黄沛昱, 赵强, 李煜龙. 基于FPGA的卷积神经网络硬件加速器设计[J]. 计算机应用与软件, 2023, 40(3): 38-44.
HUANG P Y, ZHAO Q, LI Y L. Design of FPGA-based convolutional neural network hardware accelerator[J]. Computer Applications and Software, 2023, 40(3): 38-44.
[23] KALA S, JOSE B R, MATHEW J, et al. High-performance CNN accelerator on FPGA using unified winograd-GEMM architecture[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(12): 2816-2828.
[24] 邱臻博. 一种基于FPGA的CNN硬件加速器实现[J]. 电子技术应用, 2023, 49(12): 20-25.
QIU Z B. An FPGA-based implementation of CNN hardware accelerator[J]. Application of Electronic Technique, 2023, 49(12): 20-25.
[25] MA Y F, CAO Y, VRUDHULA S, et al. Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural networks[C]//Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York: ACM, 2017: 45-54.
[26] XIAO T, TAO M. Research on FPGA based convolutional neural network acceleration method[C]//Proceedings of the 2021 IEEE International Conference on Artificial Intelligence and Computer Applications. Piscataway: IEEE, 2021: 289-292.
[27] ZHANG J W, XU F, LI J H. A high-performance hardware accelerator for sparse convolutional neural network on FPGA[C]//Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications. Piscataway: IEEE, 2022: 1143-1149.
[28] ZHANG C, SUN G Y, FANG Z M, et al. Caffeine: toward uniformed representation and acceleration for deep convolutional neural networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(11): 2072-2085.
[29] YOU W J, WU C. RSNN: a software/hardware co-optimized framework for sparse convolutional neural networks on FPGAs[J]. IEEE Access, 2020, 9: 949-960. |