计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 238-247.DOI: 10.3778/j.issn.1002-8331.2404-0247

• 模式识别与人工智能 • 上一篇    下一篇

基于多定序尺度的图卷积网络方面级情感分析

穆一茹,韩虎,孔博   

  1. 1.兰州交通大学 电子与信息工程学院,兰州 730070 
    2.甘肃省人工智能与图形图像工程研究中心,兰州 730070
  • 出版日期:2025-07-15 发布日期:2025-07-15

Aspect-Based Sentiment Analysis Based on Multiple Ordinal Scales of Graph Convolutional Network

MU Yiru, HAN Hu, KONG Bo   

  1. 1.School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    2.Gansu Artificial Intelligence and Graph Image Engineering Research Center, Lanzhou 730070, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 方面级情感分析旨在预测给定句子中特定方面的情感极性。由于现有研究方法仅考虑单一语料信息,导致存在语料库词共现、评论语句语义结构、局部词汇序列等多种信息利用不全面和不充分的问题,为此提出一种基于多定序尺度的图卷积网络模型。定序尺度分为语料库级、句子级、词汇级。构造包含三个卷积模块的多定序尺度图卷积网络:纵向全局语法依赖图卷积引入语料库全局词共现信息丰富语法表示;横向全局语义结构图卷积学习句子本身的语义结构信息;文本局部序列图卷积挖掘句子局部范围内的词汇序列信息。利用混合注意力进一步增强语法和语义结构特征表示,并通过交互机制实现多种信息的共享与融合。实验结果表明,该模型与经典模型ASGCN相比,在五个公开数据集上准确率分别提升了2.56、2.93、3.13、2.58、1.76个百分点。与最新模型DGGCN和CRF-GCN相比,均取得了优异的情感分类效果,证实了该模型融合多种语料信息的有效性。

关键词: 方面级情感分析, 图卷积网络, 多定序尺度, 混合注意力

Abstract: Aspect-based sentiment analysis aims to predict the sentiment polarity of specific aspects in a given sentence. Since the existing research methods only consider single corpus information, which leads to the problem of incomplete and insufficient utilization of multiple information such as corpus word co-occurrence, semantic structure of commented utterances, and local lexical sequences, a graph convolutional network model based on multiple ordinal scales is proposed for this purpose. The ordinal scales are categorized into corpus level, sentence level, and lexical level. Firstly, a multiple ordinal scale graph convolutional network containing three convolutional modules is constructed, in which vertical global syntactic dependency graph convolution introduces the corpus global word co-occurrence information to enrich the syntactic representation; horizontal global semantic structure graph convolution learns the semantic structure information of the sentence itself; and textual local sequence graph convolution mines the vocabulary sequence information of the sentence in the local scope. Secondly, hybrid attention is utilized to further enhance the syntactic and semantic structural feature representations, and the sharing and fusion of multiple information is achieved through the interaction mechanism. Finally, the experimental results show that the model improves the accuracy by 2.56, 2.93, 3.13, 2.58, and 1.76 percentage points on five public datasets compared with the classical model ASGCN. Compared with the latest models DGGCN and CRF-GCN, both achieve excellent sentiment classification results, confirming the effectiveness of the model in fusing multiple corpus information.

Key words: aspect-based sentiment analysis, graph convolutional network, multiple ordinal scales, hybrid attention