[1] TANG D, QIN B, FENG X, et al. Target-dependent sentiment classification with long short term memory[C]//Proceedings of the 26th International Conference on Computational Linguistics. Stroudsburg: ACL, 2016: 3298-3307.
[2] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect?level sentiment classification[C]//Proceedings of the Conference on Empirical Methods Innatural Language Processing. Stroudsburg: ACL, 2016: 606-615.
[3] FAN F, FENG Y, ZHAO D. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3433-3442.
[4] 袁勋, 刘蓉, 刘明. 融合多层注意力的方面级情感分析模型[J]. 计算机工程与应用, 2021, 57(22): 147-152.
YUAN X, LIU R, LIU M. Aspect-level sentiment analysis model incorporating multi-layer attention[J]. Computer Engineering and Applications, 2021, 57(22): 147-152.
[5] HUANG B, CARLEY K M. Syntax-aware aspect level sentiment classification with graph attention networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5469-5477.
[6] ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4568-4578.
[7] WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online. Stroudsburg: ACL, 2020: 3229-3238.
[8] BAI X, LIU P, ZHANG Y. Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 29: 503-514.
[9] 王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111-1118.
WANG R Y, TAO Z Y, ZHAO R J et al. Multi-interaction graph convolutional networks for aspect-level sentiment analysis[J]. Journal of Electronics and Information Technology, 2022, 44(3): 1111-1118.
[10] YAO L, MAO C, LUO Y. Graph convolutional networks for text classification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. Washington DC: AAAI, 2019: 7370-7377.
[11] PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543.
[12] DEVLIN J, CHANG M W, LEE K, et al. BERT: pretraining of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[13] OEPEN S, KUHLMANN M, MIYAO Y, et al. SemEval 2015 task 18: broad-coverage semantic dependency paing[C]//Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2015: 915-926.
[14] JIANG Z H, YU W, ZHOU D, et al. ConvBERT: improving BERT with spanbased dynamic convolution[C]//Advances in Neural Information Processing Systems, 2020: 12837-12848.
[15] WU F, FAN A, BAEVSKI A, et al. Pay less attention with lightweight and dynamic convolutions[J]. arXiv:1901.10430, 2019.
[16] LI D, WEI F, TAN C, et al. Adaptive recursive neural network for target dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 49-54.
[17] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. Semeval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35.
[18] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. Semeval-2015 task 12: aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2015: 486-495.
[19] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. Semeval-2016 task 5: aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 19-30.
[20] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751.
[21] TAY Y, TUAN L A, HUI S C. Learning to attend via wordaspect associative fusion for aspect-based sentiment analysis[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Washington DC: AAAI, 2018: 5956-5963.
[22] ZHAO M, YANG J, ZHANG J, et al. Aggregated graph convolutional networks for aspect-based sentiment classification[J]. Information Sciences, 2022, 600: 73-93.
[23] ZHOU J, HUANG J X, HU Q V, et al. SK-GCN: modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 205: 106292.
[24] WANG X, LIU P, ZHU Z, et al. Aspect-based sentiment analysis with graph convolutional networks over dependency awareness[C]//Proceedings of the 26th International Conference on Pattern Recognition. Piscataway: IEEE, 2022: 2238-2245.
[25] LIU H, WU Y, LI Q, et al. Enhancing aspect-based sentiment analysis using a dual-gated graph convolutional network via contextual affective knowledge[J]. Neurocomputing, 2023, 553: 126526.
[26] HUANG B, ZHANG J, JU J, et al. CRF-GCN: an effective syntactic dependency model for aspect-level sentiment analysis[J]. Knowledge-Based Systems, 2023, 260: 110125.
[27] 韩虎, 孔博, 何勇禧, 等. 基于剪枝策略的知识增强方面级情感分析[J]. 华中科技大学学报 (自然科学版), 2024, 52(11): 140-146.
HAN H, KONG B, HE Y X, et al. Aspect based sentiment analysis based on knowledge enhancement of pruning strategy[J]. Journal of Hua Zhong University of Science and Technology (Natural Science Edition), 2024, 52(11): 140-146. |