计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 177-186.DOI: 10.3778/j.issn.1002-8331.2403-0338

• 模式识别与人工智能 • 上一篇    下一篇

融合动态语义及静态结构特征的方面级情感分析

尹文晓,周建设,马登豪,吕学强   

  1. 1.首都师范大学 中国语言智能研究中心,北京 100048
    2.河北北方学院 信息科学与工程学院,河北 张家口 075000
    3.北京信息科技大学 网络文化与数字传播北京市重点实验室,北京 100101
  • 出版日期:2025-06-15 发布日期:2025-06-13

Research on Aspect?Based Sentiment Analysis by Combining Dynamic Semantic and Static Structural Features

YIN Wenxiao, ZHOU Jianshe, MA Denghao, LYU Xueqiang   

  1. 1.Research Center for Language Intelligence of China, Capital Normal University, Beijing 100048, China
    2.School of Information Science and Engineering, Hebei North University, Zhangjiakou, Hebei 075000, China
    3.Beijing Key Laboratory of Internet Culture and Digital Dissemination Research, Beijing Information Science and Technology University, Beijing 100101, China
  • Online:2025-06-15 Published:2025-06-13

摘要: 方面级情感分析作为细粒度情感分析任务,其目标是判断给定句子中特定方面的情感极性。目前这项任务面临的主要挑战是能否准确地建模方面词与观点词之间的关系。为了解决这个问题,从获取句子的动态语义特征和静态结构特征两方面出发,对方面词与观点词之间的关系进行建模。该模型通过引入动态调整权重适配器,在结合上下文的基础上获取方面感知动态语义特征,同时按照短语-分句结构的句法层次与图注意力网络结合,从而利用更全面的句法信息来获取方面感知静态结构特征,通过融合动态语义特征和静态结构特征实现更准确的方面级情感极性预测。实验结果表明,该模型在Rest14、Laptop14、Twitter这3个公开数据集上,准确率和Macro-F1值相比于基线模型均有所提升,具有较好的方面级情感分析性能。

关键词: 方面级情感分析, 动态语义, 静态结构, 图注意力网络

Abstract: Aspect-based sentiment analysis, as a fine-grained sentiment analysis task, aims to determine the sentiment polarity of specific aspects in a given sentence. The primary challenge in this task is accurately modeling the relationship between aspect words and opinion words. To address this issue, this study focuses on obtaining dynamic semantic features and static structural features of sentences to model the relationship between aspect words and opinion words. Firstly, the model introduces a dynamic adjustment weight adapter to obtain aspect-aware dynamic semantic features by incorporating contextual information. Simultaneously, it utilizes a phrase-sub-sentence structure at the syntactic level and combines it with graph attention networks to leverage more comprehensive syntactic information for obtaining aspect-aware static structural features. Finally, by integrating dynamic semantic features and static structural features, the model achieves more accurate aspect-level sentiment polarity predictions. Experimental results indicate that the proposed model demonstrates improved accuracy and Macro-F1 scores compared to baseline models on three public datasets: Rest14, Laptop14, and Twitter. It exhibits strong performance in aspect-level sentiment analysis.

Key words: aspect-based sentiment analysis, dynamic semantics, static structure, graph attention network