[1] CHAUHAN G S, NAHTA R, MEENA Y K, et al. Aspect based sentiment analysis using deep learning approaches: a survey[J]. Computer Science Review, 2023, 49: 100576.
[2] BENSOLTANE R, ZAKI T. Aspect-based sentiment analysis: an overview in the use of Arabic language[J]. Artificial Intelligence Review, 2023, 56(3): 2325-2363.
[3] 徐学锋, 韩虎. 面向方面级情感分析的多视图表示模型[J]. 计算机工程与应用, 2024, 60(5): 112-121.
XU X F, HAN H. Multi-view representation model for aspect-level sentiment analysis[J]. Computer Engineering and Applications, 2024, 60(5): 112-121.
[4] XU H, SHU L, YU P, et al. Understanding pre-trained BERT for aspect-based sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Linguistics. International Committee on Computational Linguistics, 2020: 244-250.
[5] ZHANG Z, ZHOU Z L, WANG Y N. SSEGCN: syntactic and semantic enhanced graph convolutional network for aspect-based sentiment analysis[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 4916-4925.
[6] AHMED K, NADEEM M I, ZHENG Z Y, et al. Breaking down linguistic complexities: a structured approach to aspect-based sentiment analysis[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(8): 101651.
[7] WANG X, ZHU M, BO D, et al. AM-GCN: adaptive multi-channel graph convolutional networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 1243-1253.
[8] XU G T, LIU P Y, ZHU Z F, et al. Attention-enhanced graph convolutional networks for aspect-based sentiment classification with multi-head attention[J]. Applied Sciences, 2021, 11(8): 3640.
[9] ZHAO M, YANG J, ZHANG J P, et al. Aggregated graph convolutional networks for aspect-based sentiment classification[J]. Information Sciences, 2022, 600: 73-93.
[10] ZARANDI A K, MIRZAEI S. A survey of aspect-based sentiment analysis classification with a focus on graph neural network methods[J]. Multimedia Tools and Applications, 2024, 83(19): 56619-56695.
[11] WANG Y Q, HUANG M L, ZHU X Y, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 606-615.
[12] MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017: 4068-4074.
[13] ZHANG K, LIU Q, QIAN H, et al. EATN: an efficient adaptive transfer network for aspect-level sentiment analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 377-389.
[14] ZHANG Kai, ZHANG Kun, ZHANG M D, et al. Incorporating dynamic semantics into pre-trained language model for aspect-based sentiment analysis[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 3599-3610.
[15] SHI X F, HU M, REN F J, et al. Prompted and integrated textual information enhancing aspect-based sentiment analysis[J]. Journal of Intelligent Information Systems, 2024, 62(1): 91-115.
[16] DU K, XING F, CAMBRIA E. Incorporating multiple knowledge sources for targeted aspect-based financial sentiment analysis[J]. ACM Transactions on Management Information Systems, 2023, 14(3): 1-24.
[17] ZHAO X S, PENG H, DAI Q, et al. RDGCN: reinforced dependency graph convolutional network for aspect-based sentiment analysis[J]. arXiv:2311.04467, 2023.
[18] 韩虎, 范雅婷, 徐学锋. 面向方面情感分析的多通道增强图卷积网络[J]. 电子与信息学报, 2024, 46(3): 1022-1032.
HAN H, FAN Y T, XU X F. Multi-channel enhanced graph convolutional network for aspect-based sentiment analysis[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1022-1032.
[19] WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3229-3238.
[20] 刘漳辉, 杨耀东, 陈羽中. 一种用于方面级情感分析的关系注意力图卷积网络[J]. 小型微型计算机系统, 2023, 44(4): 752-758.
LIU Z H, YANG Y D, CHEN Y Z. Relational attention based graph convolutional network for aspect-level sentiment analysis[J]. Journal of Chinese Computer Systems, 2023, 44(4): 752-758.
[21] LIANG S, WEI W, MAO X L, et al. BiSyn-GAT+: bi-syntax aware graph attention network for aspect-based sentiment analysis[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1835-1848.
[22] HAZARIKA D, PORIA S, VIJ P, et al. Modeling inter-aspect dependencies for aspect-based sentiment analysis[C]//Proceedings of the 2018 Conference of the North American Chapter Ofthe Association for Computational Linguistics: Human Language Technologies, Volume 2. Stroudsburg: ACL, 2018: 266-270.
[23] HU M T, ZHAO S W, ZHANG L, et al. CAN: constrained attention networks for multi-aspect sentiment analysis[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4600-4609.
[24] LIANG B, YIN R D, GUI L, et al. Jointly learning aspect-focused and inter-aspect relations with graph convolutional networks for aspect sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 150-161.
[25] ZHAO P L, HOU L L, WU O. Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 193: 105443.
[26] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[27] SEN C S, HARTVIGSEN T, YIN B, et al. Human attention maps for text classification: do humans and neural networks focus on the same words? [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4596-4608.
[28] BAI X F, LIU P B, ZHANG Y. Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 29: 503-514.
[29] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35.
[30] DONG L, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 49-54.
[31] ZHANG Y, ZHOU H Q, LI Z H. Fast and accurate neural CRF constituency parsing[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020: 4046-4053.
[32] DOZAT T, MANNING C D. Deep biaffine attention for neural dependency parsing[C]//Proceedings of the 5th International Conference on Learning Representations, 2017: 24-26.
[33] FAN F F, FENG Y S, ZHAO D Y. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3433-3442.
[34] 孙天伟, 杨长春, 顾晓清, 等. 结合共现网络的方面级情感分析研究[J]. 计算机工程与应用, 2023, 59(20): 111-118.
SUN T W, YANG C C, GU X Q, et al. Research on aspect-level sentiment analysis combined with co-existing networks[J]. Computer Engineering and Applications, 2023, 59(20): 111-118.
[35] SHUVO M M H, ISLAM S K, CHENG J L, et al. Efficient acceleration of deep learning inference on resource-constrained edge devices: a review[J]. Proceedings of the IEEE, 2023, 111(1): 42-91.
[36] 郭小宇, 马静, 陈杰. 多模态分级特征映射与融合表征方法研究[J]. 计算机工程与应用, 2025, 61(6): 171-182.
GUO X Y, MA J, CHEN J. Research on multimodal hierarchical feature mapping and fusion representation method[J]. Computer Engineering and Applications, 2025, 61(6): 171-182. |