计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (15): 150-160.DOI: 10.3778/j.issn.1002-8331.2305-0368

• 模式识别与人工智能 • 上一篇    下一篇

融合GAT与头尾标签的多标签文本分类模型

杨春霞,黄昱锟,闫晗,吴亚雷   

  1. 1.南京信息工程大学 自动化学院,南京 210044
    2.江苏省大数据分析技术重点实验室,南京 210044
    3.江苏省大气环境与装备技术协同创新中心,南京 210044
  • 出版日期:2024-08-01 发布日期:2024-07-30

Multi-Label Text Classification Model Integrating GAT and Head-Tail Label

YANG Chunxia, HUANG Yukun, YAN Han, WU Yalei   

  1. 1.School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
    2.Jiangsu Key Laboratory of Big Data Analysis Technology (B-DAT), Nanjing 210044, China
    3.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing 210044, China
  • Online:2024-08-01 Published:2024-07-30

摘要: 现有基于神经网络的多标签文本分类主要存在两方面的不足,一是现有的数据中标签-文本频率存在长尾分布,二是很少从图结构中获取全局标签之间的关联性,针对以上问题,提出了一种融合GAT与头尾标签分类器的多标签文本分类模型(GATTN),该模型利用带有注意力机制的Bi-LSTM得到文本的特征向量表示;同时把不同标签之间的关联性转换为包含了全局信息的边加权图,利用多层的图注意力网络来学习头标签之间的关联性。然后将其与文本上下文语义信息进行点积交互,得到具有文本语义和头标签信息的特征表示提高模型的泛化能力。在AAPD、RCV1-V2和EUR-Lex三个公开英文数据集上的实验结果证明,该模型针对数据长尾分布的多标签文本分类效果优于其他基线模型。

关键词: 多标签文本分类, 图注意力网络, 头尾标签, 多样本学习

Abstract: The existing multi-label text classification based on neural networks has two main shortcomings:firstly, there is a long tailed distribution of label text frequency in the existing data, and secondly, the correlation between global labels is rarely obtained from the graph structure. To address the above issues, this paper proposes a multi-label text classification model (GATTN) that integrates GAT and head and tail label classifiers. This model utilizes Bi-LSTM with attention mechanism to obtain the feature vector representation of the text. Simultaneously, the correlation between different labels is transformed into an edge weighted graph containing global information, and a multi-layer graph attention network is used to learn the correlation between head labels. Then it interacts with the text context semantic information by dot product, and gets the feature representation with text semantics and header tag information to improve the generalization ability of the model. The experimental results on two publicly available English datasets, AAPD, RCV1-V2 and EUR-Lex, demonstrate that this model outperforms other baseline models in multi-label text classification for long tailed distribution of data.

Key words: multi-label text classification, graph attention networks (GAT), head and tail label, many-shot learning