计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 187-195.DOI: 10.3778/j.issn.1002-8331.2403-0364

• 模式识别与人工智能 • 上一篇    下一篇

语义信息提取和图结构挖掘的事件骨架生成方法

黄凯,马廷淮,孙圣杰,龚智恒,汤毅翔,陈思   

  1. 1.南京信息工程大学 软件学院,南京 210044
    2.江苏海洋大学 计算机工程学院,江苏 连云港 222005
    3.南京信息工程大学 计算机学院、网络安全学院,南京 210044
    4.南京信息工程大学 人工智能学院(未来技术学院),南京 210044
  • 出版日期:2025-06-15 发布日期:2025-06-13

Event Skeleton Generation Method for Semantic Information Extraction and Graph Structure Mining

HUANG Kai, MA Tinghuai, SUN Shengjie, GONG Zhiheng, TANG Yixiang, CHEN Si   

  1. 1.School of Software, Nanjing University of Information Technology, Nanjing 210044, China
    2.School of Computer Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
    3.School of Computer Science and School of Network Security, Nanjing University of Information Technology, Nanjing 210044, China
    4.School of Artificial Intelligence (Future Technology College), Nanjing University of Information Technology, Nanjing 210044, China
  • Online:2025-06-15 Published:2025-06-13

摘要: 事件骨架生成旨在从一系列的事件图中归纳出包含事件类型及其时序关系的事件骨架图。这是在时间复杂事件模式归纳任务中的一个核心步骤。尽管现有的方法在这项任务上已经取得了一定的效果,但是由于事件图的复杂性和多变性,这些方法在挖掘事件图的结构信息和语义信息方面仍显不足。因此,为解决该问题,提出了一种事件骨架生成模型。在图编码阶段,模型使用了拉普拉斯位置编码,以精准捕捉和编码图结构的局部信息。同时,模型采用了多头注意力机制和图卷积网络,以提取语义信息和图结构信息,全面总结事件发展的全局结构信息,构建出更泛化、更全面的事件骨架图。实验证明,在事件骨架生成任务上,该模型在Event Match指标上提升了8.83%,Event Sequence Match指标上提升了11.2%(L=2)和7.6%(L=3),实现了较大的性能提升。

关键词: 事件模式归纳, 事件骨架生成, 图生成, 语义信息提取, 图结构挖掘

Abstract: The event skeleton generation aims to induce an event skeleton graph containing event types and their temporal relationships from a series of event graphs. This is a core step in the task of temporal complex event schema induction. Although existing methods have achieved certain effectiveness in this task, they still lack in mining structural and semantic information from event graphs due to their complexity and variability. Therefore, to address this issue, a novel event skeleton generation model is proposed in this paper. In the graph encoding stage, the model utilizes Laplacian positional encoding to accurately capture and encode the local information of the graph structure. Meanwhile, the model adopts multi-head attention mechanisms and graph convolutional networks to extract semantic and structural information, comprehensively summarizing the global structural information of event development and constructing more generalized and comprehensive event skeleton graphs. Experimental results demonstrate that in the event skeleton generation task, the model achieves an improvement of 8.83% on the Event Match metric and improvements of 11.2% (L=2) and 7.6% (L=3) on the Event Sequence Match metric, achieving significant performance gains.

Key words: event schema induction, event skeleton generation, graph generation, semantic information extraction, graph structure mining