[1] 刘玉婷, 丁鲲, 刘茗, 等. 结合对抗训练增强和联合损失微调的脚本事件预测方法[J]. 小型微型计算机系统, 2025, 46(2): 274-279.
LIU Y T, DING K, LIU M, et al. Script event prediction based on adversarial training augmentation and joint loss fine-tuning[J]. Journal of Chinese Computer Systems, 2025, 46(2): 274-279.
[2] 单晓红, 庞世红, 刘晓燕, 等. 基于事理图谱的网络舆情事件预测方法研究[J]. 情报理论与实践, 2020, 43(10): 165-170.
SHAN X H, PANG S H, LIU X Y, et al. Research on Internet public opinion event prediction method based on event evolution graph[J]. Information Studies (Theory & Application), 2020, 43(10): 165-170.
[3] MA T H, RONG H, HAO Y S, et al. A novel sentiment polarity detection framework for Chinese[J]. IEEE Transactions on Affective Computing, 2022, 13(1): 60-74.
[4] ZHOU H H, MA T H, RONG H, et al. MDMN: multi-task and domain adaptation based multi-modal network for early rumor detection[J]. Expert Systems with Applications, 2022, 195: 116517.
[5] LI M L, LI S, WANG Z, et al. The future is not one-dimensional: complex event schema induction by graph modeling for event prediction[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 5203-5215.
[6] JIN X M, LI M L, JI H. Event schema induction with double graph autoencoders[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 2013-2025.
[7] CHAMBERS N. Event schema induction with a probabilistic entity-driven model[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 1797-1807.
[8] CHEUNG J C K, POON H, VANDERWENDE L. Probabilistic frame induction[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2013: 837-846.
[9] NGUYEN K H, TANNIER X, FERRET O, et al. Generative event schema induction with entity disambiguation[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 188-197.
[10] SHA L, LI S J, CHANG B B, et al. Joint learning templates and slots for event schema induction[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 428-434.
[11] HUANG L F, CASSIDY T, FENG X C, et al. Liberal event extraction and event schema induction[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 258-268.
[12] YUAN Q, REN X, HE W Q, et al. Open-schema event profiling for massive news corpora[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 587-596.
[13] LIN Y, JI H, HUANG F, et al. A joint neural model for information extraction with global features[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 7999-8009.
[14] CHAMBERS N, JURAFSKY D. Unsupervised learning of narrative event chains[C]//Proceedings of ACL-08: HLT, 2008: 789-797.
[15] CHAMBERS N, JURAFSKY D. Unsupervised learning of narrative schemas and their participants[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-ACL-IJCNLP’09. Morristown: ACL, 2009: 602.
[16] RUDINGER R, RASTOGI P, FERRARO F, et al. Script induction as language modeling[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1681-1686.
[17] PICHOTTA K, MOONEY R. Learning statistical scripts with LSTM recurrent neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016.
[18] WEBER N, BALASUBRAMANIAN N, CHAMBERS N. Event representations with tensor-based compositions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[19] WEBER N, RUDINGER R, VAN DURME B. Causal inference of script knowledge[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 7583-7596.
[20] MOSTAFAZADEH N, CHAMBERS N, HE X D, et al. A corpus and cloze evaluation for deeper understanding of commonsense stories[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 839-849.
[21] WEBER N, SHEKHAR L, KWON H, et al. Generating narrative text in a switching dynamical system[C]//Proceedings of the 24th Conference on Computational Natural Language Learning. Stroudsburg: ACL, 2020: 520-530.
[22] KWON H, KOUPAEE M, SINGH P, et al. Modeling preconditions in text with a crowd-sourced dataset[C]//Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 3818-3828.
[23] LI M L, ZENG Q, LIN Y, et al. Connecting the dots: event graph schema induction with path language modeling[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 684-695.
[24] DU X Y, ZHANG Z X, LI S, et al. RESIN-11: schema-guided event prediction for 11 newsworthy scenarios[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations. Stroudsburg: ACL, 2022: 54-63.
[25] KREUZER D, BEAINI D, HAMILTON W L, et al. Rethinking graph transformers with spectral attention[J]. arXiv:2106. 03893, 2021.
[26] ZHANG M, JIANG S, CUI Z, et al. D-VAE: a variational autoencoder for directed acyclic graphs[C]//Advances in Neural Information Processing Systems, 2019. |