[1] 于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J]. 计算机应用, 2022, 42(6): 1898-1913.
YU M, HE W T, ZHOU X C, et al. Review of recommendation system[J]. Journal of Computer Applications, 2022, 42(6): 1898-1913.
[2] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.
[3] SHEIKH F M, RAZZAZI F. Music similarity measurement and recommendation system using convolutional neural networks[J]. International Journal of Multimedia Information Retrieval, 2021, 10(1): 43-53.
[4] 王杰, 唐菁荟, 王昊, 等. 融合主题模型和卷积神经网络的APP推荐研究[J]. 情报理论与实践, 2019, 42(4): 158-165.
WANG J, TANG J H, WANG H, et al. APP recommendation study based on fusion topic model and convolution neural network[J]. Information Studies: Theory & Application, 2019, 42(4): 158-165.
[5] LEE H I, CHOI I Y, MOON H S, et al. A multi-period product recommender system in online food market based on recurrent neural networks[J]. Sustainability, 2020, 12(3): 969.
[6] 程淑玉, 黄淑桦, 印鉴. 融合知识图谱与循环神经网络的推荐模型[J]. 小型微型计算机系统, 2020, 41(8): 1670-1675.
CHENG S Y, HUANG S Y, YING J. Recommendation model based on knowledge graph and recurrent neural network[J]. Journal of Chinese Computer Systems, 2020, 41(8): 1670-1675.
[7] LYU Z, WU Y, LAI J, et al. Knowledge enhanced graph neural networks for explainable recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4954-4968.
[8] 刘鑫, 梅红岩, 王嘉豪, 等. 图神经网络推荐方法研究[J]. 计算机工程与应用, 2022, 58(10): 41-49.
LIU X, MEI H Y, WANG J H, et al. Research on graph neural network recommendation method[J]. Computer Engineering and Applications, 2022, 58(10): 41-49.
[9] 张杰, 张月琴, 张泽华, 等. 异质信息融合网络嵌入的注意力偏好推荐方法[J]. 计算机工程与应用, 2021, 57(21): 123-131.
ZHANG J, ZHANG Y Q, ZHANG Z H, et al. Attention preference recommendation methods with fusing network embedding in heterogeneous information[J]. Computer Engineering and Applications, 2021, 57(21): 123-131.
[10] HASANZADEH S, FAKHRAHMAD S M, TAHERI M. Review-based recommender systems: a proposed rating prediction scheme using word embedding representation of reviews[J]. The Computer Journal, 2020, 65(2): 345-354.
[11] ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 353-362.
[12] CAO Y, WANG X, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference. New York: ACM Press, 2019: 151-161.
[13] ZHAO X, CHENG Z, ZHU L, et al. UGRec: modeling directed and undirected relations for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2021: 193-202.
[14] WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 28th International Conference on World Wide Web. New York: ACM Press, 2019: 3307-3313.
[15] SU Y, ZHANG R, ERFANI S M, et al. Neural graph matching based collaborative filtering[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 849-858.
[16] 唐宏, 范森, 唐帆. 融合协同知识图谱与优化图注意网络的推荐算法[J]. 计算机工程与应用, 2022, 58(19): 98-106.
TANG H, FANG S, TANG F. Recommendation algorithm integrating collaborative knowledge graph and optimizing graph attention network[J]. Computer Engineering and Applications, 2022, 58(19): 98-106.
[17] SONG J, WANG Y, TANG S, et al. Local-global memory neural network for medication prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(4): 1723-1736.
[18] 李鹏飞, 鲁法明, 包云霞, 等. 基于医疗过程挖掘与患者体征的药物推荐方法[J]. 计算机集成制造系统, 2020, 26(6): 1668-1678.
LI P F, LU F M, BAO Y X, et al. Drug recommendation method based on medical process mining and patient signs[J]. Computer Integrated Manufacturing Systems, 2020, 26(6): 1668-1678.
[19] SHANG J, MA T, XIAO C, et al. Pre-training of graph augmented transformers for medication recommendation[J]. arXiv:1906.00346, 2019.
[20] SU Y, SHI Y, LEE W, et al. TAHDNet: time-aware hierarchical dependency network for medication recommendation[J]. Journal of Biomedical Informatics, 2022, 129: 104069.
[21] JIN Y, ZHANG W, HE X, et al. Syndrome-aware herb recommendation with multi-graph convolution network[C]//Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), 2020: 145-156.
[22] 成全, 佘德昕. 融合患者体征与用药数据的图神经网络药物推荐方法研究[J]. 数据分析与知识发现, 2022(4): 1-15.
CHENG Q, SHE D X. Research on drug recommendation based on graph neural network fusing patient’s signs and medication data[J]. Data Analysis and Knowledge Discovery, 2022(4): 1-15.
[23] MAO C, YAO L, LUO Y. MedGCN: medication recommendation and lab test imputation via graph convolutional networks[J]. J Biomed Inform, 2022, 127: 104000.
[24] 雷鸣, 夏梦鸽, 汪雪锋, 等. 基于链路预测的协同药物组合推荐研究: 面向疾病并发症诊疗[J]. 图书情报工作, 2021, 65(12): 122-129.
LEI M, XIA M G, WANG X F, et al. Research on drug combination recommendation based on link prediction for concurrent diseases treatment[J]. Library and Information Service, 2021, 65(12): 122-129.
[25] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 687-696.
[26] VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[27] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems, 2016: 3844-3852.
[28] QIU J, TANG J, MA H, et al. DeepInf: social influence prediction with deep learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2018: 2110-2119.
[29] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2019: 950-958.
[30] XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]//International Conference on Machine Learning, 2018: 5453-5462.
[31] JOHNSON A, BULGARELLI L, et al. MIMIC-IV (version 2. 0)[DB]. PhysioNet, 2022.
[32] RENDLE S, GANTNER Z, FREUDENTHALER C, et al. Fast context-aware recommendations with factorization machines[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 635-644.
[33] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM Press, 2017: 173-182.
[34] AI Q, AZIZI V, CHEN X, et al. Learning heterogeneous knowledge base embeddings for explainable recommendation[J]. Algorithms, 2018, 11(9): 137.
[35] WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 417-426.
[36] WIEGREFFE S, PINTER Y. Attention is not not explanation[J]. arXiv:1908.04626, 2019. |