[1] 李舟军, 张俊贤, 廖湘科, 等.软件安全漏洞检测技术[J]. 计算机学报, 2015, 38(4): 717-732.
LI Z J, ZHANG J X, LIAO X K, et al. Survey of software vulnerability detection techniques[J]. Chinese Journal of Computers, 2015, 38(4): 717-732.
[2] JING X Y, WU F, DONG X W, et al. An improved SDA based defect prediction framework for both within-project andcross-project class-imbalance problems[J]. IEEE Transactions on Software Engineering, 2017, 43(4): 321-339.
[3] NAGAPPAN N, ZIMMERMANN T, WILLIAMS L, et al. Searching for a needle in a haystack: predicting security vulnerabilities for windows vista[C]//Proceedings of the Third International Conference on Software Testing, Verification and Validation, 2010: 421-428.
[4] YANG X, LO D, XIA X, et al. Deep learning for just-in-time defect prediction[C]//Proceedings of the IEEE International Conference on Software Quality, 2015:17-26.
[5] LIN G, ZHANG J, LUO W, et al. POSTER: vulnerability discovery with function representation learning from unlabeled projects[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017: 2539-2541.
[6] ZOU D, WANG S, XU S, et al. μVulDeePecker: a deep learning-based system for multiclass vulnerability detection[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(5): 2224-2236.
[7] LI Z, ZOU D, XU S, et al. SySeVR: a framework for using deep learning to detect software vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(4): 2244-2258.
[8] FAN G, DIAO X, YU H, et al. Software defect prediction via attention-based recurrent neural network[J]. Scientific Programming, 2019: 6230953.
[9] RAY B, HELLENDOORN V J, GODHANE S, et al. On the “naturalness” of buggy code[C]//2016 IEEE/ACM 38th International Conference on Software Engineering, 2016: 428-439.
[10] CHENG X, WANG H, HUA J, et al. Static detection of control-flow-related vulnerabilities using graph embedding[C]//2019 24th International Conference on Engineering of Complex Computer Systems, 2019: 41-50.
[11] CAO S, SUN X, BO L, et al. MVD: memory-related vulnerability detection based on flow-sensitive graph neural networks[C]//Proceedings of the 44th International Conference on Software Engineering, 2022: 1456-1468.
[12] SIKIC L, KURDIJA A S, VLADIMIR K, et al. Graph neural network for source code defect prediction[J]. IEEE Access, 2022, 10:10402.
[13] XU J, WANG F, AI J. Defect prediction with semantics and context features of codes based on graph representation learning[J]. IEEE Transactions on Reliability, 2021, 70(2): 613-25.
[14] 段旭, 吴敬征, 罗天悦, 等.基于代码属性图及注意力双向 LSTM 的漏洞挖掘方法[J].软件学报, 2020, 31(11): 3404-3420.
DUAN X, WU J Z, LUO T Y, et al. Vulnerability mining method based on code property graph and attention BiLSTM[J]. Journal of Software, 2020, 31(11): 3404-3420.
[15] 赵波, 上官晨晗, 彭小燕, 等.基于语义感知图神经网络的智能合约字节码漏洞检测方法[J].工程科学与技术, 2022, 54(2): 49-55.
ZHAO B, SHANGGUAN C H, PENG X Y, et al. Semantic-aware graph neural network for smart contract byte code vulnerability detection[J].Advanced Engineering Sciences,2022, 54(2): 49-55.
[16] WEISER M. Program slicing[C]//Proceedings of the 5th International Conference on Software Engineering, 1981: 439-449.
[17] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
[18] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, 2005: 729-734.
[19] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//5th International Conference on Learning Representations, 2017.
[20] VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//International Conference on Learning Representations, 2018.
[21] CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 1725-1735.
[22] CHENG X, WANG H, HUA J, et al. DeepWukong: statically detecting software vulnerabilities using deep graph neural network[J]. ACM Transactions on Software Engineering and Methodology, 2021, 30(3): 1-33.
[23] NGHI D B, YU Y, JIANG L. InferCode: self-supervised learning of code representations by predicting subtrees[C]//2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 2021: 1186-1197.
[24] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[25] CHENG W, SHEN Y, ZHU Y, et al. A neural attention model for urban air quality inference: learning the weights of monitoring stations[C]//Conference on Artificial Intelligence, 2018: 2151-2158. |