[1] TRISEDYA B D, WEIKUM G, QI J Z, et al. Neural relation extraction for knowledge base enrichment[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 229-240.
[2] DENG Y, XIE Y X, LI Y L, et al. Multi-task learning with multi-view attention for answer selection and knowledge base question answering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6318-6325.
[3] ZHOU M, DUAN N, LIU S J, et al. Progress in neural NLP: modeling, learning, and reasoning[J]. Engineering, 2020, 6(3): 155-188.
[4] WANG X, HE X N, CAO Y X, et al. Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958.
[5] ZENG D J, LIU K, CHEN Y B, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1753-1762.
[6] 隗昊, 唐焕玲, 周爱, 等. 基于双路分段注意力神经张量网络的临床文本关系抽取[J]. 电子学报, 2023, 51(3): 658-665.
KUI H, TANG H L, ZHOU A, et al. Clinical relation extraction via dual piecewise attention neural tensor network[J]. Acta Electronica Sinica, 2023, 51(3): 658-665.
[7] 闫雄, 段跃兴, 张泽华. 采用自注意力机制和CNN融合的实体关系抽取[J]. 计算机工程与科学, 2020, 42(11): 2059-2066.
YAN X, DUAN Y X, ZHANG Z H. Entity relationship extraction fusing self-attention mechanism and CNN[J]. Computer Engineering & Science, 2020, 42(11): 2059-2066.
[8] SUN C H, JI W D, ZHOU G H, et al. FGSI: distant supervision for relation extraction method based on fine-grained semantic information[J]. Scientific Reports, 2023, 13: 14075.
[9] 肖立中, 臧中兴, 宋赛赛. 融合自注意力的关系抽取级联标记框架研究[J]. 计算机工程与应用, 2023, 59(3): 77-83.
XIAO L Z, ZANG Z X, SONG S S. Research on cascaded labeling framework for relation extraction with self-attention[J]. Computer Engineering and Applications, 2023, 59(3): 77-83.
[10] LONG J, WANG Y, WEI X X, et al. Entity-centric fully connected GCN for relation classification[J]. Applied Sciences, 2021, 11(4): 1377.
[11] LI D, LEI Z L, SONG B Y, et al. Neural attentional relation extraction with dual dependency trees[J]. Journal of Computer Science and Technology, 2022, 37(6): 1369-1381.
[12] CHEN X Y, ZHANG M, XIONG S W, et al. On the form of parsed sentences for relation extraction[J]. Knowledge-Based Systems, 2022, 251: 109184.
[13] XU Y, MOU L L, LI G, et al. Classifying relations via long short term memory networks along shortest dependency paths[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1785-1794.
[14] LI J J, SHUANG K, GUO J Y, et al. Enhancing semantic relation classification with shortest dependency path reasoning[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31: 1550-1560.
[15] 李冬梅, 张扬, 李东远, 等. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448.
LI D M, ZHANG Y, LI D Y, et al. Review of entity relation extraction methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448.
[16] 刘成星, 张超群, 代林林, 等. TFLS-BiGRU-ATT: 一种简单有效的中文短文本关系抽取模型[J]. 中文信息学报, 2023, 37(6): 115-127.
LIU C X, ZHANG C Q, DAI L L, et al. TFLS-BiGRU-ATT: a simple but effective relation extraction model for Chinese short text[J]. Journal of Chinese Information Processing, 2023, 37(6): 115-127.
[17] ZENG D J, LIU K, LAI S W, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers. Stroudsburg: ACL, 2014, 2335-2344.
[18] ZHANG D X, WANG D. Relation classification via recurrent neural network[J]. arXiv:1508.01006, 2015.
[19] WELLING M, KIPF T N. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 4th International Conference on Learning Representations, 2016: 1-6.
[20] QIAN Y J, SANTUS E, JIN Z J, et al. GraphIE: a graph-based framework for information extraction[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 751-761.
[21] DEVLIN J, CHANG M W, LEE K, et al. BERT: pretraining of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4171-4186.
[22] HUA W Z, DAI Z H, LIU H X, et al. Transformer quality in linear time[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 9099-9117.
[23] XU J J, WEI J, XU S, et al. A discourse-level named entity recognition and relation extraction dataset for Chinese literature text[J]. arXiv:1711.07010, 2017.
[24] LI Z R, DING N, LIU Z Y, et al. Chinese relation extraction with multi-grained information and external linguistic knowledge[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4377-4386.
[25] LE H Q, CAN D C, VU S T, et al. Large-scale exploration of neural relation classification architectures[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2266-2277.
[26] ZHONG Z C. Chinese entity relation extraction based on multi-level gated recurrent mechanism and self-attention[C]//Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Information Systems. New York: ACM, 2021: 1-7.
[27] ZHAO Q H, GAO T H, GUO N. A novel Chinese relation extraction method using polysemy rethinking mechanism[J]. Applied Intelligence, 2023, 53(7): 7665-7676.
[28] YANG J, JI B, LI S S, et al. Dynamic multi-view fusion mechanism for Chinese relation extraction[C]//Proceedings of the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2023: 405-417.
[29] 孟佳营. 基于句法分析的关系分类和关系抽取方法研究[D]. 杭州: 杭州电子科技大学, 2022.
MENG J Y. Research on relation classification and relation extraction based on syntactic analysis[D]. Hangzhou: Hangzhou Dianzi University, 2022.
[30] XU B, LI S, ZHANG Z W, et al. BERT-PAGG: a Chinese relationship extraction model fusing PAGG and entity location information[J]. PeerJ Computer Science, 2023, 9: e1470. |