计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 306-315.DOI: 10.3778/j.issn.1002-8331.2403-0106

• 图形图像处理 • 上一篇    下一篇

基于Transformer的生成对抗网络的柔印标签在线检测

龙进良,蓝学深,蔡念,燕舒乐,肖盼, 许少秋,周映红   

  1. 1.广东工业大学 信息工程学院, 广州 510006 
    2.广东工业大学 精密电子制造技术与装备国家重点实验室,广州 510006
    3.佛山缔乐视觉科技有限公司,广东 佛山 528200
  • 出版日期:2025-06-01 发布日期:2025-05-30

Online Detection of Flexographic Printing Labels Based on Transformer-Based Generative Adversarial Network

LONG Jinliang, LAN Xueshen, CAI Nian, YAN Shule, XIAO Pan, XU Shaoqiu, ZHOU Yinghong   

  1. 1.School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
    2.State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
    3.Foshan Deeple Vision Technology Co., Ltd., Foshan, Guangdong 528200, China
  • Online:2025-06-01 Published:2025-05-30

摘要: 为了及时把控柔印标签的生产质量,融合Transformer设计了一种生成对抗网络,提出了一种柔印标签在线检测方法。为了解决实际生产中缺陷样品稀少、样本分布不均的问题,提出了一种新颖的噪声添加方案模拟缺陷样本,仅使用合格的柔印标签样本训练模板生成器。结合跳连接和Transformer block设计了一种生成对抗网络,以及相应的损失函数,以提高生成器对模板的表示能力。设计了一种基于自适应阈值的缺陷评估方案实现柔印标签检测。实验结果表明,提出的检测方法可以在每个样本38 ms的合理检测时间下,达到2.23%平均误检率、0%平均漏检率、0.983 F1-score的检测性能,在数据集上优于现有异常检测深度学习方法。

关键词: 图像处理, 缺陷检测, 生成对抗网络, 柔印标签, 随机噪声

Abstract: To control the production quality of flexographic labels in a timely manner, this paper integrates Transformer architecture to design a generative adversarial network and proposes an online detection method for flexographic labels. To address the issue of rare defective samples and uneven sample distribution in actual production, the paper introduces a novel noise addition scheme to simulate defective samples, training the template generator solely with qualified flexographic label samples. A generative adversarial network is designed by combining skip connections and Transformer blocks, along with corresponding loss functions, to enhance the generator’s capability to represent templates. Lastly, a defect evaluation scheme based on adaptive thresholds is devised for the detection of flexographic labels. Experimental results indicate that the detection method proposed in this paper achieves a detection performance with an average false positive rate of 2.23%, an average false negative rate of 0%, and an F1-score of 0.983 within a reasonable detection time of 38 ms per sample, outperforming existing anomaly detection deep learning methods on this dataset.

Key words: image processing, defect detection, generative adversarial network, flexographic printing labels, random noise