[1] 蔡腾, 陈慈发, 董方敏. 结合Transformer和动态特征融合的低照度目标检测[J]. 计算机工程与应用, 2024, 60(9): 135-141.
CAI T, CHEN C F, DONG F M. Low-light object detection combining transformer and dynamic feature fusion[J]. Computer Engineering and Applications, 2024, 60(9): 135-141.
[2] 顾阳, 四兵锋. 基于多源特征增强的交通标志识别方法[J]. 北京交通大学学报, 2023, 47(4): 73-80.
GU Y, SI B F. Traffic sign recognition method based on multi-source feature enhancement[J]. Journal of Beijing Jiaotong University, 2023, 47(4): 73-80.
[3] CHO S W, BAEK N R, KOO J H, et al. Modified perceptual cycle generative adversarial network-based image enhancement for improving accuracy of low light image segmentation[J]. IEEE Access, 2020, 9: 6296-6324.
[4] LAND E H. The Retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108-128.
[5] UMAR D S, KUPPA S. Kumaraswamy distribution based Bi-histogram equalization for enhancement of microscopic images[J]. International Journal of Image and Graphics, 2022, 22(1): 1-10.
[6] SINGH P, MUKUNDAN R, RYKE D R. Feature enhancement in medical ultrasound videos using contrast-limited adaptive histogram equalization[J]. Journal of Digital Imaging, 2020, 33(1): 273-285.
[7] PAN X X, LI C L, PAN Z G, et al. Low-light image enhancement method based on Retinex theory by improving illumination map[J]. Applied Sciences, 2022, 12(10): 5257.
[8] WANG K, HUANG F Z. An improved MSRCR low illumination image enhancement algorithm combined with residual fusion[C]//Proceedings of the 40th Chinese Control Conference, 2021: 2993-2998.
[9] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image en-hancement[J]. Pattern Recognition, 2017, 61: 650-662.
[10] 包易峰, 杨德刚. 面向低照度图像增强的注意力曝光融合网络[J]. 计算机工程与应用, 2023, 59(20): 237-244.
BAO Y F, YANG D G. Attention exposure fusion network for low-illumination image enhancement[J]. Computer Engineering and Applications, 2023, 59(20): 237-244
[11] WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement[J]. arXiv:1808.04560, 2018.
[12] 卫依雪, 周冬明, 王长城, 等. 结合多分支结构和U-Net的低照度图像增强[J]. 计算机工程与应用, 2022, 58(12): 199-208.
WEI Y X, ZHOU D M, WANG C C, et al. Low-light image enhancement using multi-branch structure and U-Net[J]. Computer Engineering and Applications, 2022, 58(12): 199-208.
[13] 陈俊杰, 周永霞, 祖佳贞, 等. 结合稠密小波变换的双分支低照度图像增强[J]. 计算机工程与应用, 2024, 60(4): 200-210.
CHEN J J, ZHOU Y X, ZU J Z, et al. Dual-branch low-light image enhancement combined with densely wavelet[J]. Computer Engineering and Applications, 2024, 60(4): 200-210.
[14] 王照乾, 孔韦韦, 滕金保, 等. DenseNet生成对抗网络低照度图像增强方法[J]. 计算机工程与应用, 2022, 58(8): 214-220.
WANG Z Q, KONG W W, TENG J B, et al. Low illumination image enhancement method based on denseNet GAN[J]. Computer Engineering and Applications, 2022, 58(8): 214-220.
[15] 李治杰, 陈明, 冯国富. 结合双分支结构和无配对GAN的低光图像增强[J]. 计算机工程与应用, 2023, 59(19): 201-210.
LI Z J, CHEN M, FENG G F. Low-light image enhancement combining two-branch structure and unpaired GAN[J]. Computer Engineering and Applications, 2023, 59(19): 201-210.
[16] TANG G, NI J, CHEN Y, et al. An improved CycleGAN based model for low-light image enhancement[J]. IEEE Sensors Journal, 2024, 24(14): 21879-21892.
[17] 吴佳奇, 张文琪, 陈伟, 等. 基于改进CycleGAN的煤矿井下低照度图像增强方法[J]. 华中科技大学学报 (自然科学版), 2023, 51(5): 40-46.
WU J Q, ZHANG W Q, CHEN W, et al. Image enhance ment method of underground low illumination in coal mine based on improved CycleGAN[J]. Journal of Huazhong University of Science and Technology, 2023, 51(5): 40-46.
[18] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: the missing ingredient for fast stylization[J]. arXiv:1607.08022, 2016.
[19] HUNG G, LIU S, VAN D MAATEN L, et al. CondenseNet: an efficient denseNet using learned group convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2752-2761.
[20] LEE H J, KIM H E, NAM H. SRM: a style-based recalibration module for convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1854-1862.
[21] ANWAR S, LI C Y. Diving deeper into underwater image enhancement: a survey[J]. Signal Processing: Image Communication, 2020, 89: 159-169.
[22] GUO X J, LI Y, LING, et al. Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993.
[23] JOBSON D J, RAHMAN Z, WOODELL G A. A multi-scale Retinex for bridging the gap between color images and the observation of scences[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976.
[24] SINGH N, MANAF A, RASTOGI M, et al. Performance analysis of conditional GANs based image-to-image translation models for low-light image enhancement[C]//Proceedings of the International Conference on Signal Processing and Communication, 2022: 468-474.
[25] WU Q, QIN M, SONG J, et al. An improved method of low light image enhancement based on Retinex[C]//Proceedings of the International Conference on Image Vision and Computing, 2021: 233-241.
[26] JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. |