计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (8): 260-266.DOI: 10.3778/j.issn.1002-8331.2401-0348

• 图形图像处理 • 上一篇    下一篇

聚合全局-局部特征的真实点云语义分割

田媛,赵明富,宋涛,熊海龙,叶定兴,王敏   

  1. 1.光纤传感与光电检测重庆市重点实验室,重庆 400054
    2.重庆理工大学 电气与电子工程学院,重庆 400054
  • 出版日期:2025-04-15 发布日期:2025-04-15

Global-Local Feature Aggregation for Real Point Cloud Semantic Segmentation

TIAN Yuan, ZHAO Mingfu, SONG Tao, XIONG Hailong, YE Dingxing, WANG Min   

  1. 1.Optical Fiber Sensing and Photoelectric Detection Chongqing Key Laboratory, Chongqing 400054, China
    2.College of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China
  • Online:2025-04-15 Published:2025-04-15

摘要: 从真实点云场景中学习有效特征进行点云分割仍是具有挑战性的难题。为加强点云局部细粒度特征的提取能力并兼顾全局上下文信息,提出聚合全局-局部特征的真实点云语义分割网络。基于Pointnet++网络分层提取特征的思想,引入密度自适应局部邻域特征提取层学习点云局部细粒度特征,自动调节点云分组尺度,增强网络对于疏密不均点云的特征学习适应性。在编码器和解码器中加入空间注意力模块,通过自注意力机制学习全局点间的相关性并通过残差连接缓解梯度消失问题。此外,采用了改进的空间编码,显式地表达空间结构,优化网络参数。在公开数据集S3DIS和Semantic3D上进行实验,其中在S3DIS测试的平均交并比(mIoU)和总体准确率(OA)分别比基准PointNet++提高了16.9个百分点和7.4个百分点。

关键词: 点云处理, 语义分割, 自注意力, 密度自适应, 局部特征编码

Abstract: Learning effective features from real point cloud scenes is still a challenging problem for point cloud segmentation work. A real point cloud semantic segmentation network based on global-local feature aggregation?is presented to improve the capability to identify local fine-grained structures of point clouds and consider global context information. To learn the local fine-grained structures of point clouds, automatically modify the point cloud grouping scale, and improve the network’s feature learning adaptability to unevenly dense point clouds, a density-adaptive local neighborhood feature extraction layer is firstly?presented, which is based on the idea of hierarchical feature extraction in Pointnet++. Secondly, a spatial attention module is added to the encoder and decoder, which uses the self-attention mechanism to learn the correlation between global points and uses a residual connection to mitigate the vanishing gradient issue. In addition, improved spatial coding is adopted to explicitly express the spatial structure and optimize network parameters. Finally, experiments are conducted on the public data sets S3DIS and Semantic3D, in which the mIoU (mean intersection over union) and OA (overall accuracy) tested in S3DIS are improved by 16.9?percentage points and 7.4?percentage points respectively compared with the baseline PointNet++.

Key words: point cloud processing, semantic segmentation, self-attention, density adaptation, local feature encoding