[1] 武越, 苑咏哲, 向本华, 等. 三维点云配准中的计算智能方法综述[J]. 中国图象图形学报, 2023, 28(9): 2763-2787.
WU Y, YUAN Y Z, XIANG B H, et al. Overview of the computational intelligence method in 3D point cloud registration[J]. Journal of Image and Graphics, 2023, 28(9): 2763-2787.
[2] 袁萌萌, 张泽旭. 三维点云与图像双模态融合的空间目标部件识别方法[J]. 宇航学报, 2023, 44(5): 796-804.
YUAN M M, ZHANG Z X. A recognition method for components of space target based on bi-modal fusion of 3D point cloud and image[J]. Journal of Astronautics, 2023, 44(5): 796-804.
[3] 赵佳琦, 周勇, 何欣, 等. 基于深度学习的点云分割研究进展分析[J]. 电子与信息学报, 2022, 44(12): 4426-4440.
ZHAO J Q, ZHOU Y, HE X, et al. Research progress analysis of point cloud segmentation based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4426-4440.
[4] 王大方, 尚海, 曹江, 等. 基于自注意力机制的自动驾驶场景点云语义分割方法[J]. 汽车工程, 2022, 44(11): 1656-1664.
WANG D F, SHANG H, CAO J, et al. Semantic segmentation method of point cloud in automatic driving scene based on self-attention mechanism[J]. Automotive Engineering, 2022, 44(11): 1656-1664.
[5] 庞磊, 曹志强, 喻俊志. 基于A*和TEB融合的行人感知无碰跟随方法[J]. 航空学报, 2021, 42(4): 501-510.
PANG L, CAO Z Q, YU J Z. A pedestrian-aware collision-free following approach for mobile robots based on A* and TEB[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 501-510.
[6] PEREZ-PEREZ Y, GOLPARVAR-FARD M, EL-RAYES K. Segmentation of point clouds via joint semantic and geometric features for 3D modeling of the built environment[J]. Automation in Construction, 2021, 125(7): 103584.
[7] 卢健, 贾旭瑞, 周健, 等. 基于深度学习的三维点云分割综述[J]. 控制与决策, 2023, 38(3): 595-611.
LU J, JIA X R, ZHOU J, et al. A review of deep learning based on 3D point cloud segmentation[J]. Control and Decision, 2023, 38(3): 595-611.
[8] MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3523-3542.
[9] HUANG J, YOU S. Point cloud labeling using 3D convolutional neural network[C]//Proceedings of the 23rd International Conference on Pattern Recognition, 2016: 2670-2675.
[10] MENG H Y, GAO L, LAI Y K, et al. VV-Net: voxel VAE net with group convolutions for point cloud segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8499-8507.
[11] WU B, WAN A, YUE X, et al. SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D Lidar point cloud[C]//Proceedings of the IEEE International Conference on Robotics and Automation, 2018: 1887-1893.
[12] BELTRáN J, GUINDEL C, MORENO F M, et al. BirdNet: a 3D object detection framework from LiDAR information[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems, 2018: 3517-3523.
[13] HUANG Q, WANG W, NEUMANN U. Recurrent slice networks for 3D segmentation of point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2626-2635.
[14] DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5828-5839.
[15] ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1534-1543.
[16] CHANG A, DAI A, FUNKHOUSER T, et al. Matterport3D: learning from RGB-D data in indoor environments[C]//Proceedings of the International Conference on 3D Vision, 2017.
[17] BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: a dataset for semantic scene understanding of Lidar sequences[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9297-9307.
[18] HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3D. net: a new large-scale point cloud classification benchmark[J]. arXiv:1704.03847, 2017.
[19] LI X, LI C, TONG Z, et al. Campus3D: a photogrammetry point cloud benchmark for hierarchical understanding of outdoor scene[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 238-246.
[20] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[21] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. arXiv:1706.24013, 2017 .
[22] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[23] ZHAO H, JIANG L, FU C W, et al. PointWeb: enhancing local neighborhood features for point cloud processing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5565-5573.
[24] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4558-4567.
[25] WU W X, QI Z, LI F X. PointConv: deep convolutional networks on 3D point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9621-9630.
[26] THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6411-6420.
[27] LI Y, BU R, SUN M, et al. PointCNN: convolution on x-transformed points[J]. arXiv:1801.07791, 2018.
[28] LIU X, HAN Z, LIU Y S, et al. Point2Sequence: learning the shape representation of 3D point clouds with an attention-based sequence to sequence network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 8778-8785.
[29] CHEN L, CHEN W, XU Z, et al. DAPNet: a double self-attention convolutional network for point cloud semantic labeling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9680-9691.
[30] HU Q, YANG B, XIE L, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11108-11117.
[31] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[32] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[33] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[34] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
[35] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv:1711.05101, 2017.
[36] LI G, MULLER M, THABET A, et al. DeepGCNs: can GCNs go as deep as CNNs?[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9267-9276.
[37] YANG J, ZHANG Q, NI B, et al. Modeling point clouds with self-attention and gumbel subset sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3323-3332.
[38] ZHANG Z, HUA B S, YEUNG S K. ShellNet: efficient point cloud convolutional neural networks using concentric shells statistics[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1607-1616.
[39] LEI H, AKHTAR N, MIAN A. Spherical kernel for efficient graph convolution on 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3664-3680.
[40] GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7: 187-199.
[41] TANG L, ZHAN Y, CHEN Z, et al. Contrastive boundary learning for point cloud segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8489-8499.
[42] WANG L, HUANG Y, HOU Y, et al. Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10296-10305. |