[1] 张金玉, 马永超. 基于锁相法的涂层缺陷检测识别的仿真研究[J]. 激光与红外, 2017, 47(3): 313-318.
ZHANG J Y, MA Y C. Simulation on detection and recognition of coating defect based on lock-in thermography[J]. Laser & Infrared, 2017, 47(3): 313-318.
[2] CZIMMERMANN T, CIUTI G, MILAZZO M, et al. Visual-based defect detection and classification approaches for industrial applications—a survey[J]. Sensors, 2020, 20(5): 1459.
[3] 刘卫光, 刘东, 王璐. 可变形卷积网络研究综述[J]. 计算机科学与探索, 2023, 17(7): 1549-1564.
LIU W G, LIU D, WANG L. Survey of deformable convolutional networks[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1549-1564.
[4] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 17th IEEE International Conference on Computer Vision, 1999: 1150-1157.
[5] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125.
ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125.
[6] 赵振兵, 王帆帆, 刘良帅, 等. 基于注意力特征融合YOLOv5模型的无人机输电线路航拍图像金具检测方法[J]. 电测与仪表, 2023, 60(3): 145-152.
ZHAO Z B, WANG F F, LIU L S, et al. Hardware detection method of aerial image of UAV transmission line based on attention feature fusion YOLOv5 model[J]. Electrical Measurement & Instumentation, 2023, 60(3): 145-152.
[7] 于璐, 朱海红, 李思宇, 等. 基于图像自适应增强与特征融合的目标检测方法[J]. 测绘工程, 2024, 33(1): 32-40.
YU L, ZHU H H, LI S Y et al. Object detection method based on image adaptive enhancement and feature fusion[J]. Engineering of Surveying and Mapping, 2024, 33(1): 32-40.
[8] GUO C W, ZHANG Z W. The design on surface defects detection system of cylindrical diode based on decision tree learning[J]. Microcomputer & Its Applications, 2015, 119: 1933-1949.
[9] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
[10] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
[11] LIAN J, JIA W K, ZAREAPOOR M, et al. Deep-learning-based small surface defect detection via an exaggerated local variation-based generative adversarial network[J]. IEEE Transactions on Industrial Informatics, 2019, 16(2): 1343-1351.
[12] TAO X, WANG Z H, ZHANG Z T, et al. Wire defect recognition of spring-wire socket using multitask convolutional neural networks[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(4): 689-698.
[13] LIU B, ZHANG X Y, GAO Z Y, et al. Weld defect images classification with VGG16-Based neural network[C]//Proceedings of the International Forum on Digital TV and Wireless Multimedia Communications, 2017: 215-223.
[14] HU B, WANG J. Detection of PCB surface defects with improved faster-RCNN and feature pyramid network[J]. IEEE Access, 2020, 8: 108335-108345.
[15] TABERNIK D, ?ELA S, SKVARC J, et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 759-776.
[16] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[17] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[18] LYRA S, MAYER L, OU L, et al. A deep learning-based camera approach for vital sign monitoring using thermography images for ICU patients[J]. Sensors, 2021, 21(4): 1495.
[19] AYOUB N, SCHNEIDER-KAMP P. Real-time on-board deep learning fault detection for autonomous UAV inspections[J]. Electronics, 2021, 10(9): 1091.
[20] JIANG Z, ZHAO L, LI S, et al. Real-time object detection method based on improved YOLOv4-tiny[J]. arXiv:2011. 04244, 2020.
[21] LI F, LIU Z, SHEN W, et al. A remote sensing and airborne edge-computing based detection system for pine wilt disease[J]. IEEE Access, 2021, 9: 66346-66360.
[22] HUI T, XU Y L, JARHINBEK R. Detail texture detection based on YOLOv4‐tiny combined with attention mechanism and bicubic interpolation[J]. IET Image Processing, 2021, 15(8): 12228.
[23] LI Z, LI J, DAI W. A two-stage multiscale residual attention network for light guide plate defect detection[J]. IEEE Access, 2020, 9: 2780-2792.
[24] 陈宗阳. 面向工业应用的涂层缺陷视觉检测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
CHEN Z Y. Research on visual inspection technology of coating defects for industrial applications[D]. Harbin: Harbin Engineering University, 2022.
[25] 陈宗阳, 赵辉, 吕永胜, 等. 基于改进MobileNetV2网络的涂层表面缺陷识别方法[J]. 哈尔滨工程大学学报, 2022, 43(4): 572-579.
CHEN Z Y, ZHAO H, LYU Y S, et al. A recognition method of coating surface defects based on the improved MobileNetV2 network[J]. Journal of Harbin Engineering University, 2022, 43(4): 572-579.
[26] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[27] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[28] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014. |