[1] YAN C, LI H X, LI Z G. Environmental pollution and economic growth: evidence of SO2 emissions and GDP in China[J]. Frontiers in Public Health, 2022, 10: 930780.
[2] LE T T H, NGUYEN V C, PHAN T H N. Foreign direct investment, environmental pollution and economic growth: an insight from non-linear ARDL co-integration approach[J]. Sustainability, 2022, 14(13): 8146.
[3] IBRAHIM T, ABOU AKROUCH M, HACHEM F, et al. Cooling techniques for enhanced efficiency of photovoltaic panels: comparative analysis with environmental and economic insights[J]. Energies, 2024, 17(3): 713.
[4] MUSTAFA R J, GOMAA M R, AL-DHAIFALLAH M, et al. Environmental impacts on the performance of solar photovoltaic systems[J]. Sustainability, 2020, 12(2): 608.
[5] ZHAO X F, ZHAO Y J, HU S C, et al. Progress in active infrared imaging for defect detection in the renewable and electronic industries[J]. Sensors, 2023, 23(21): 8780.
[6] MANSOURI A, ZETTL M, MAYER O, et al. Defect detection in photovoltaic modules using electroluminescence imaging[C]//Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, 2012: 3374-3378.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[8] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[9] 赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 51-84.
ZHAO Q C, WU Y Q, YUAN Y B. Progress of ship detection and recognition methods in optical remote sensing images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 51-84.
[10] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[11] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[12] GIRSHICK R. Fast R-CNN[J]. arXiv:1504.08083, 2015.
[13] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[14] XIA Z F, PAN X R, SONG S J, et al. DAT++: spatially dynamic vision transformer with deformable attention[J]. arXiv:2309.01430, 2023.
[15] WANG Y, ZHAO J Y, YAN Y H, et al. Pushing the boundaries of solar panel inspection: elevated defect detection with YOLOv7-GX technology[J]. Electronics, 2024, 13(8): 1467.
[16] CAO Y K, PANG D D, ZHAO Q C, et al. Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules[J]. Engineering Applications of Artificial Intelligence, 2024, 131: 107866.
[17] ZHANG M, YIN L J. Solar cell surface defect detection based on improved YOLOv5[J]. IEEE Access, 2022, 10: 80804-80815.
[18] LI L L, WANG Z F, ZHANG T T. GBH-YOLOv5: ghost convolution with BottleneckCSP and tiny target prediction head incorporating YOLOv5 for PV panel defect detection[J]. Electronics, 2023, 12(3): 561.
[19] LIU Q, LIU M, WANG C Z, et al. An efficient CNN-based detector for photovoltaic module cells defect detection in electroluminescence images[J]. Solar Energy, 2024, 267: 112245.
[20] WANG J J, BI L, SUN P X, et al. Deep-learning-based automatic detection of photovoltaic cell defects in electroluminescence images[J]. Sensors, 2023, 23(1): 297.
[21] 陈亚芳, 廖飞, 黄新宇, 等. 多尺度YOLOv5的太阳能电池缺陷检测[J]. 光学精密工程, 2023, 31(12): 1804-1815.
CHEN Y F, LIAO F, HUANG X Y , et al. Multi-scale YOLOv5 for solar cell defect detection[J]. Optics and Precision Engineering, 2023, 31(12): 1804-1815.
[22] 陈辉, 张傲, 孙帅, 等. 基于改进DeepLabv3+的含噪声热红外图像光伏热斑检测方法[J]. 太阳能学报, 2023, 44(11): 23-30.
CHEN H, ZHANG A, SUN S, et al. Photovoltaic thermal spot detection method with noisy thermal infrared image based on improved DeepLabv3+[J]. Acta Energiae Solaris Sinica, 2023, 44(11): 23-30.
[23] TAN H L, ZHOU H B, DUAN C M, et al. RAFBSD: an efficient detector for accurate identification of defects in photovoltaic cells[J]. IEEE Access, 2024, 12: 61512-61528.
[24] ZHANG L Y, WU X, LIU Z H, et al. ESD-YOLOv8: an efficient solar cell fault detection model based on YOLOv8[J]. IEEE Access, 2024, 12: 138801-138815.
[25] MA W T, CHEN B, WANG B, et al. Photovoltaic panel defect detection via multiscale Siamese convolutional fusion network with information bottleneck theory[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5030815.
[26] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[27] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
[28] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[29] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[30] MISRA D. Mish: a self regularized non-monotonic activation function[J]. arXiv:1908.08681, 2019.
[31] HAN X, CHANG J, WANG K. You only look once: unified, real-time object detection[J]. Procedia Computer Science, 2021, 183(1): 61-72.
[32] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[33] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
[34] WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 548-558.
[35] WU H P, XIAO B, CODELLA N, et al. CvT: introducing convolutions to vision transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 22-31.
[36] LIN T. Focal loss for dense object detection[J]. arXiv:1708. 02002, 2017.
[37] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[38] ZHOU X Y, WANG D Q, KR?HENBüHL P. Objects as points[J]. arXiv:1904.07850, 2019.
[39] 刘承毅, 董效杰, 刘三军, 等. 基于改进Dn-YOLOv7算法的光伏板表面小目标缺陷检测[J]. 湖北民族大学学报(自然科学版), 2024, 42(2): 212-218.
LIU C Y, DONG X J, LIU S J, et al. Detection of small defects on photovoltaic panel surfaces based on improved Dn-YOLOv7 algorithm[J]. Journal of Hubei Minzu University (Natural Science Edition), 2024, 42(2): 212-218.
[40] 朱成杰, 刘乐乐, 朱洪波. 多尺度的YOLOv8-MNS光伏板缺陷检测算法[J/OL]. 重庆工商大学学报(自然科学版), 2024: 1-9 (2024-06-04)[2024-11-20]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=YZZK20240531002&
dbname=CJFD&dbcode=CJFQ.
ZHU C J, LIU L L, ZHU H B. Multi-scale YOLOv8-MNS algorithm for photovoltaic panel defect detection[J/OL]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2024: 1-9 (2024-06-04)[2024-11-20]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=
YZZK20240531002&dbname=CJFD&dbcode=CJFQ. |