计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 299-310.DOI: 10.3778/j.issn.1002-8331.2412-0035

• 图形图像处理 • 上一篇    下一篇

基于全局与局部特征提取增强的光伏板缺陷检测算法

苏俊,唐潮龙,刘智权,黄超艺,黄初指   

  1. 1.厦门理工学院 电气工程与自动化学院,福建 厦门 361024
    2.厦门市高端电力装备及智能控制重点实验室,福建 厦门 361024
    3.国网福建省电力有限公司 泉州供电公司,福建 泉州 362101
  • 出版日期:2025-06-15 发布日期:2025-06-13

Photovoltaic Panel Defect Detection Algorithm Enhanced by Global and Local Feature Extraction

SU Jun, TANG Chaolong, LIU Zhiquan, HUANG Chaoyi, HUANG Chuzhi   

  1. 1.School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, Fujian 361024, China
    2.Xiamen Key Laboratory of High End Power Equipment and Intelligent Control, Xiamen, Fujian 361024, China
    3.Quanzhou Power Supply Company, State Grid Fujian Electric Power Co., Ltd., Quanzhou, Fujian 362101, China
  • Online:2025-06-15 Published:2025-06-13

摘要: 光伏板作为光伏发电系统的核心组件,其质量直接关系到发电效率和电路安全。然而,现有的光伏板缺陷检测算法在特征提取时未能充分结合卷积神经网络(convolutional neural network,CNN)与Transformer的优势,这在一定程度上限制了模型的整体性能。为此,提出了一种基于全局与局部特征提取增强的光伏板缺陷检测算法(global and local feature enhanced YOLOX,GLF-YOLOX)。在编码阶段,结合CNN和Transformer的特长,设计了双分支主干网络,用于高效提取图像的局部细节和全局上下文信息。通过全局与局部增强注意力机制,动态融合全局与局部特征,增强模型对目标区域的关注能力并强化细节特征表达。设计了基于Transformer编码器层的检测头,用于精确建模全局特征并优化特征表达,从而显著提升分类任务的准确性。实验结果表明,所提算法在消融实验和对比实验中均表现优异,相较于主流目标检测方法,在平均精度(mean average precision,mAP)指标上提高了约 4.5%,进一步验证了算法的有效性和优越性。

关键词: 光伏板, 缺陷检测, 卷积神经网络(CNN), Transformer, 双分支

Abstract: Photovoltaic panels, as the core components of photovoltaic power generation systems, directly impact power generation efficiency and circuit safety. However, existing defect detection algorithms often fail to effectively integrate the advantages of convolutional neural network (CNN) and Transformers, limiting the overall model performance. To address this issue, this paper proposes the global and local feature enhanced YOLOX (GLF-YOLOX) algorithm. Firstly, the method employs a dual-branch backbone network that combines the local feature extraction strength of CNN with the global contextual modeling capability of Transformers, effectively capturing both fine-grained details and global information. Additionally, a global and local enhanced attention mechanism is introduced to dynamically fuse global and local features, improving the model’s focus on target regions and enhancing detail representation. Furthermore, a Transformer encoder layer-based detection head is designed to refine global feature modeling and optimize feature expression, significantly enhancing classification accuracy. Experimental results demonstrate that GLF-YOLOX achieves outstanding performance, with a mean average precision (mAP) improvement of approximately 4.5% over mainstream object detection methods, validating its effectiveness and superiority.

Key words: photovoltaic panel, defect detection, convolutional neural network (CNN), Transformer, double branch