[1] ABDO A M A N, CZúNI L. Zero-shot learning and classification of steel surface defects[C]//Proceedings of the Fourteenth International Conference on Machine Vision, 2022: 45.
[2] HE Z Q, LIU Q F. Deep regression neural network for industrial surface defect detection[J]. IEEE Access, 2020, 8: 35583-35591.
[3] GUO Y B, FAN Y M, XIANG Z Y, et al. Zero-sample surface defect detection and classification based on semantic feedback neural network[J]. arXiv:2106.07959, 2021.
[4] HABIB M T, SHUVO S B, UDDIN M S, et al. Automated textile defect classification by Bayesian classifier based on statistical features[C]//Proceedings of the 2016 International Workshop on Computational Intelligence. Piscataway: IEEE, 2016: 101-105.
[5] YU J B, LU X L. Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis[J]. IEEE Transactions on Semiconductor Manufacturing, 2016, 29(1): 33-43.
[6] GROCHOWALSKI J M, CHADY T. Rapid identification of material defects based on pulsed multifrequency eddy current testing and the k-nearest neighbor method[J]. Materials, 2023, 16(20): 6650.
[7] SOUKUP D, HUBER-M?RK R. Convolutional neural networks for steel surface defect detection from photometric stereo images[C]//Proceedings of the International Symposium on Visual Computing. Cham: Springer International Publishing, 2014: 668-677.
[8] WEI R B, SONG Y H, ZHANG Y L. Enhanced faster region convolutional neural networks for steel surface defect detection[J]. ISIJ International, 2020, 60(3): 539-545.
[9] WANG L, LIU X B, MA J T, et al. Real-time steel surface defect detection with improved multi-scale YOLO-v5[J]. Processes, 2023, 11(5): 1357.
[10] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 951-958.
[11] LI Z, GAO L, GAO Y, et al. Zero-shot surface defect recognition with class knowledge graph[J]. Advanced Engineering Informatics, 2022, 54: 101813.
[12] FENG L J, ZHAO C H. Fault description based attribute transfer for zero-sample industrial fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1852-1862.
[13] GAO J Y, ZHANG T Z, XU C S. I know the relationships: zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 8303-8311.
[14] RAHMAN S, KHAN S, BARNES N. Improved visual-semantic alignment for zero-shot object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 11932-11939.
[15] CHEN J L, PAN T Y, ZHOU Z T, et al. An adversarial learning framework for zero-shot fault recognition of mechanical systems[C]//Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics. Piscataway: IEEE, 2019: 1275-1278.
[16] LV H X, CHEN J L, PAN T Y, et al. Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis[J]. Applied Soft Computing, 2020, 95: 106577.
[17] HAYAT N, HAYAT M, RAHMAN S, et al. Synthesizing the unseen for zero-shot object detection[C]//Proceedings of the Asian Conference on Computer Vision. Cham: Springer, 2021: 155-170.
[18] SARMA S, KUMAR S, SUR A. Resolving semantic confusions for improved zero-shot detection[J]. arXiv:2212.06097, 2022.
[19] HUANG P L, HAN J W, CHENG D, et al. Robust region feature synthesizer for zero-shot object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7612-7621.
[20] 赵楚, 段先华, 苏俊楷. 改进Faster RCNN的瓷砖表面瑕疵检测研究[J]. 计算机工程与应用, 2023, 59(14): 201-208.
ZHAO C, DUAN X H, SU J K. Research on ceramic tile surface defect detection by improved Faster RCNN[J]. Computer Engineering and Applications, 2023, 59(14): 201-208.
[21] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the International Conference on Machine Learning, 2017: 214-223.
[22] HE X J, LUO Z Q, LI Q Y, et al. DG-GAN: a high quality defect image generation method for defect detection[J]. Sensors, 2023, 23(13): 5922.
[23] JAIN S, SETH G, PARUTHI A, et al. Synthetic data augmentation for surface defect detection and classification using deep learning[J]. Journal of Intelligent Manufacturing, 2022, 33(4): 1007-1020.
[24] KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[J]. arXiv:2004.11362, 2020.
[25] LIU R, GE Y X, CHOI C L, et al. DivCo: diverse conditional image synthesis via contrastive generative adversarial network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16372-16381.
[26] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823.
[27] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251.
[28] ZHOU P F, MIN W Q, ZHANG Y, et al. SeeDS: semantic separable diffusion synthesizer for zero-shot food detection[J]. arXiv:2310.04689, 2023.
[29] 周成龙, 陈玉明, 朱益冬. 粒K均值聚类算法[J]. 计算机工程与应用, 2023, 59(13): 317-324.
ZHOU C L, CHEN Y M, ZHU Y D. Granular K-means clustering algorithm[J]. Computer Engineering and Applications, 2023, 59(13): 317-324.
[30] SONG K C, YAN Y H. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J]. Applied Surface Science, 2013, 285: 858-864.
[31] 苏佳, 贾泽, 秦一畅, 等. 面向工业表面缺陷检测的改进YOLOv8算法[J]. 计算机工程与应用, 2024, 60(14): 187-196.
SU J, JIA Z, QIN Y C, et al. Improved YOLOv8 algorithm for industrial surface defect detection[J]. Computer Engineering and Applications, 2024, 60(14): 187-196.
[32] HAN Z Y, FU Z Y, CHEN S, et al. Contrastive embedding for generalized zero-shot learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2371-2381.
[33] DEMIREL B, CINBIS R G, IKIZLER-CINBIS N. Zero-shot object detection by hybrid region embedding[J]. arXiv:1805. 06157, 2018 .
[34] ZHENG Y, HUANG R R, HAN C Q, et al. Background learnable cascade for zero-shot object detection[C]//Proceedings of the Asian Conference on Computer Vision. Cham: Springer, 2021: 107-123.
[35] RAHMAN S, KHAN S, BARNES N. Polarity loss for zero-shot object detection[J]. arXiv:1811.08982, 2018. |