Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (15): 55-65.DOI: 10.3778/j.issn.1002-8331.2402-0190
• Research Hotspots and Reviews • Previous Articles Next Articles
WANG Haoyu, YANG Haitao, WANG Jinyu, ZHOU Xixuan, ZHANG Honggang, XU Yifan
Online:
2024-08-01
Published:
2024-07-30
王浩宇,杨海涛,王晋宇,周玺璇,张宏钢,徐一帆
WANG Haoyu, YANG Haitao, WANG Jinyu, ZHOU Xixuan, ZHANG Honggang, XU Yifan. Review of Image Denoising Methods for Remote Sensing[J]. Computer Engineering and Applications, 2024, 60(15): 55-65.
王浩宇, 杨海涛, 王晋宇, 周玺璇, 张宏钢, 徐一帆. 遥感图像去噪方法研究综述[J]. 计算机工程与应用, 2024, 60(15): 55-65.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2402-0190
[1] FENG X, TIAN S, ABHADIOMHEN S E, et al. Edge-preserved low-rank representation via multi-level knowledge in-corporation for remote sensing image denoising[J]. Remote Sensing, 2023, 15(9): 2318. [2] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464. ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and Attention Gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464. [3] 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7): 1526-1548. MA Y, KEZIERBIEKE G. Research review of image semantic segmentation method in high-resolution remote sensing image interpretation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. [4] CAO Y, WEI J, CHEN S, et al. Remote sensing image recovery and enhancement by joint blind denoising and dehazing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2963-2976. [5] LEI S, LU M, LIN J, et al. Remote sensing image denoising based on improved semi-soft threshold[J]. Signal, Image and Video Processing, 2021, 15: 73-81. [6] LIU Y, WAN B, SHI D, et al. Generative recorrupted-to-recorrupted: an unsupervised image denoising network for arbitrary noise distribution[J]. Remote Sensing, 2023, 15(2): 364. [7] RASTI B, CHANG Y, DALSASSO E, et al. Image restoration for remote sensing: overview and toolbox[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 10(2): 201-230. [8] JEBUR R S, DER C S, HAMMOOD D A, et al. Image denoising techniques: an overview[C]//AIP Conference Proceedings, 2023. [9] 桑柳. 基于深度学习的红外图像去噪算法研究[D]. 西安: 西安电子科技大学, 2021. SANG L. Research on infrared image denoising algorithm based on deep learning[D]. Xi’an: Xidian University, 2021. [10] WANG Z, WEI J, WANG Y, et al. Remote sensing image denoising algorithm based on improved Transformer network[C]//Proceedings of the 2024 International Conference on Optoelectronic Information and Optical Engineering (OIOE 2024), 2024: 169-176. [11] XIONG F, ZHOU J, ZHOU J, et al. Multitask sparse representation model inspired network for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15. [12] 季利鹏, 孙志远, 朱大奇. 基于U-Net网络结构的SAR图像去噪算法研究[J/OL]. 微电子学与计算机: 1-10[2024-04-09]. http://kns.cnki.net/kcms/detail/61.1123.TN.20240205. 1006.002.html. JI L P, SUN Z Y, ZHU D Q. Research on SAR image denoising technology based on U-Net network structure[J/OL]. Microelectronics & Computer: 1-10[2024-04-09]. http://kns.cnki.net/kcms/detail/61.1123.TN.20240205.1006.002.html. [13] 柳鑫. 红外图像去噪算法研究[D]. 西安: 西安电子科技大学, 2020. LIU X. Research on infrared image denoising algorithm[D]. Xi’an: Xidian University, 2020. [14] 徐辉. 基于低秩描述模型的高光谱图像去噪算法研究[D]. 南京: 南京邮电大学, 2023. XU H. Hyperspectral image denoising algorithm based on low rank description model[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023. [15] SARA U, AKTER M, UDDIN M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18. [16] SETIADI D R I M. PSNR vs SSIM: imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications, 2021, 80(6): 8423-8444. [17] KELE? O, YΙLMAZ M A, TEKALP A M, et al. On the computation of PSNR for a set of images or video[C]//Proceedings of the 2021 Picture Coding Symposium (PCS), 2021: 1-5. [18] WU H, CHEN B, GUO Z, et al. Mini-infrared thermal imaging system image denoising with multi-head feature fusion and detail enhancement network[J]. Optics & Laser Technology, 2024, 179: 111311. [19] CHENG G, HAN J, ZHOU P, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119-132. [20] CHENG G, HAN J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28. [21] CHENG G, ZHOU P, HAN J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. [22] XIAO Z, LIU Q, TANG G, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644. [23] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983. [24] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. [25] LI J, QU C, SHAO J. Ship detection in SAR images based on an improved faster R-CNN[C]//2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), 2017: 1-6. [26] WEI S, ZENG X, QU Q, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254. [27] 赵炜东. 基于可见光与红外图像联合的目标与地物提取方法研究[D]. 北京: 军事科学院, 2023. ZHAO W D. Research of object and land cover extraction based on combination of visible and infrared remote sensing images[D]. Beijing: Academy of Military Sciences, 2023. [28] 黄硕. 基于学习的红外遥感超分辨率目标识别算法研究[D]. 北京: 中国科学院大学, 2020. HUANG S. Research on super-resolution recognition method of infrared target based on machine learning[D]. Beijing: University of Chinese Academy of Sciences, 2020. [29] LIU J, FAN X, HUANG Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5802-5811. [30] TANG L, YUAN J, ZHANG H, et al. PIAFusion: a progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83: 79-92. [31] 任超, 张胜国, 李现广, 等. 一种新的遥感影像组合滤波去噪方法[J]. 桂林理工大学学报, 2023, 43(3): 442-449. REN C, ZHANG S G, LI X G, et al. A new combined filtering and denoising algorithm for remote sensing images[J]. Journal of Guilin University of Technology, 2023, 43(3): 442-449. [32] 邢笑笑, 李杰. 空域滤波图像去噪算法研究[J]. 电子技术与软件工程, 2022(16): 144-147. XING X X, LI J. Research on spatial domain filtering image denoising algorithm[J]. Electronic Technology & Software Engineering, 2022(16): 144-147. [33] PAN J, TANG Y, PAN B. The algorithm of fast mean filtering[C]//Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, 2007: 244-248. [34] ZHANG X, LIAO H, DU X, et al. A fast hybrid noise filtering algorithm based on median-mean[C]//Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), 2018: 2120-2125. [35] JUSTUSSON B I. Median filtering: statistical properties[J]. Two-Dimensional Digital Signal Prcessing II: Transforms and Median Filters, 2006: 161-196. [36] ITO K. Gaussian filter for nonlinear filtering problems[C]//Proceedings of the IEEE Conference on Decision & Control, 2002: 1218-1223. [37] PARIS S, DURAND F. A fast approximation of the bilateral filter using a signal processing approach[J]. International Journal of Computer Vision, 2009, 81(1): 24-52. [38] MCCLELLAN J, PARKS T. Eigenvalue and eigenvector decomposition of the discrete Fourier transform[J]. IEEE Transactions on Audio and Electroacoustics, 1972(1): 66-74. [39] 陈振娅, 刘增力. 基于小波变换的水下图像去噪方法[J]. 现代电子技术, 2023, 46(23): 43-47. CHEN Z Y, LIU Z L. Underwater image denoising method based on wavelet transform[J]. Modern Electronics Technique, 2023, 46(23): 43-47. [40] NARASIMHA M, PETERSON A. On the computation of the discrete cosine transform[J]. IEEE Transactions on Communications, 1978, 26(6): 934-936. [41] DABOV K, FOI A, KATKOVNIK V, et. al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. [42] GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 2862-2869. [43] 任超, 李现广, 邓开元, 等. 结合BM3D和多级非线性加权平均中值滤波的遥感影像混合噪声去噪方法[J]. 测绘通报, 2020(1): 89-93. REN C, LI X G, DENG K Y, et al. Mixed noise denoising method for remote sensing images combining BM3D and multi-level nonlinear weighted average median filtering[J]. Bulletin of Surveying and Mapping, 2020(1): 89-93. [44] CHEN J, LI H, CHEN T, et al. A denoising method of remote sensing images based on improved BM3D[C]//Proceedings of the 4th International Conference on Computer Science and Application Engineering, 2020: 1-6. [45] ZHAO H, ZHOU X, PENG C, et al. An integrated BM3D method for removing mixed noise in remote sensing image[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 925-932. [46] LIU X, LU X, MA L. An improved synthetic aperture radar image denoising method based on block-matching and 3D filtering[J]. The International Archives of the Photogram-metry, Remote Sensing and Spatial Information Sciences, 2020, 43: 319-323. [47] FAZEL M. Matrix rank minimization with applications[D]. Palo Alto: Leland Sanford Junior University, 2002. [48] 胡鹏程, 卢献健, 唐诗华, 等. WNNM参数模型及迭代判断机制优化的遥感影像去噪[J]. 遥感信息, 2023, 38(5): 140-148. HU P C, LU X J, TANG S H, et al. Remote sensing image denoising optimized by WNNM parametric model and iterative judgment mechanism[J]. Remote Sensing Information, 2023, 38(5): 140-148. [49] CHEN J, ZHU Z, HU H, et al. A novel adaptive group sparse representation model based on infrared image denoising for remote sensing application[J]. Applied Sciences, 2023, 13(9): 5749. [50] BO F, LU W, WANG G, et al. A blind SAR image despeckling method based on improved weighted nuclear norm minimization[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [51] DENIS L, DALSASSO E, TUPIN F. A review of deep-learning techniques for SAR image restoration[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, 2021: 411-414. [52] 冯旭斌. 基于深度学习的光学遥感图像去噪与超分辨率重建算法研究[D]. 北京: 中国科学院大学, 2021. FENG X B. Research on deep-learning based optical remote sensing image denoising and super-resolution reconstructing algorithm[D]. Beijing: University of Chinese Academy of Sciences, 2021. [53] HUANG Z, ZHU Z, WANG Z, et al. D3CNNs: dual denoiser driven convolutional neural networks for mixed noise removal in remotely sensed images[J]. Remote Sensing, 2023, 15(2): 443. [54] HAN L, ZHAO Y, LV H, et al. Remote sensing image denoising based on deep and shallow feature fusion and attention mechanism[J]. Remote Sensing, 2022, 14(5): 1243. [55] LIU M, JIANG W, LIU W, et al. Dynamic adaptive attention guided self-supervised single remote sensing image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-11. [56] KUANG X, SUI X, LIU Y, et al. Single infrared image optical noise removal using a deep convolutional neural network[J]. IEEE Photonics Journal, 2017, 10(2): 1-15. [57] XU K, ZHAO Y, LI F, et al. Single infrared image stripe removal via deep multi-scale dense connection convolutional neural network[J]. Infrared Physics & Technology, 2022, 121: 104008. [58] MOHANAKRISHNAN P, SUTHENDRAN K, PRADEEP A, et al. Synthetic aperture radar image despeckling based on modified convolution neural network[J]. Applied Geomatics, 2022(1): 1-12. [59] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [60] FENG X, ZHANG W, SU X, et al. Optical remote sensing image denoising and super-resolution reconstructing using optimized generative network in wavelet transform domain[J]. Remote Sensing, 2021, 13(9): 1858. [61] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4681-4690. [62] KUANG X, SUI X, LIU Y, et al. Single infrared image enhancement using a deep convolutional neural network[J]. Neurocomputing, 2019, 332: 119-128. [63] YANG P, WU H, CHENG L, et al. Infrared image denoising via adversarial learning with multi-level feature attention network[J]. Infrared Physics & Technology, 2023, 128: 104527. [64] WANG P, ZHANG H, PATEL V M. Generative adversarial network-based restoration of speckled SAR images[C]//Proceedings of the 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2017: 1-5. [65] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems, 2020: 6840-6851. [66] BANDARA W G C, NAIR N G, PATEL V M. DDPM-CD: remote sensing change detection using denoising diffusion probabilistic models[J]. arXiv:2206.11892, 2022. [67] PERERA M V, NAIR N G, BANDARA W G C, et al. SAR despeckling using a denoising diffusion probabilistic model[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5. [68] ANTONIADIS A, OPPENHEIM G. Translation-invariant denoising[M]//Wavelets and statistics. New York, NY: Springer, 1995: 125-150. [69] HU X, XU Z, CHEN Z, et al. SAR despeckling via regional denoising diffusion probabilistic model[J]. arXiv:2401.03122, 2024. [70] LI J, WEN Y, HE L. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162. [71] NASCIMENTO M G, FAWCETT R, PRISACARIU V A. DSConv: efficient convolution operator[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 5148-5157. [72] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5. [73] LI T, LI Z, ROCKWELL H, et al. Prototype memory and attention mechanisms for few shot image generation[C]//Proceedings of the 11th International Conference on Learning Representations, April 25-29, 2022. [74] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for Faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031. |
[1] | LIU Muyun, BIAN Chunjiang, CHEN Hongzhen. Few-Shot Remote Sensing Aircraft Image Generation Algorithm Based on Feature Disentangling [J]. Computer Engineering and Applications, 2024, 60(9): 244-253. |
[2] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[3] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[4] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[5] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[6] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[7] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[8] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[9] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[10] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[11] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[12] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[13] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[14] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[15] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||