Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (15): 42-54.DOI: 10.3778/j.issn.1002-8331.2401-0112

• Research Hotspots and Reviews • Previous Articles     Next Articles

Review on Zero or Few Sample Rotating Machinery Fault Diagnosis

LIU Junfu, CEN Jian, HUANG Hankun, LIU Xi, ZHAO Bichuang, SI Weiwei   

  1. 1.School of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China
    2.Guangzhou Intelligent Building Equipment Information Integration and Control Key Laboratory, Guangzhou 510665, China
  • Online:2024-08-01 Published:2024-07-30

零小样本旋转机械故障诊断综述

刘俊孚,岑健,黄汉坤,刘溪,赵必创,司伟伟   

  1. 1.广东技术师范大学 自动化学院,广州 510665
    2.广州市智慧建筑设备信息集成与控制重点实验室,广州 510665

Abstract: With the advent of the data era, data-driven fault diagnosis methods have demonstrated excellent performance. Since the application of deep learning in fault diagnosis, supervised learning has made significant advancements. However, when samples are scarce or missing, supervised learning lacks the necessary training conditions. This paper proposes the zero-shot and small-sample problem, and analyzes its current status in the field of rotating machinery fault diagnosis. It reviews the development process, mainstream models, and current research hotspots of zero-shot rotating machinery fault diagnosis. Existing research achievements are summarized from two aspects: zero-shot problems and small-sample problems, and their applications in zero-shot and small-sample problems are analyzed. Finally, the paper discusses the future trends in zero-shot methods for rotating machinery fault diagnosis.

Key words: zero samples, few samples, fault diagnosis, data expansion

摘要: 随着数据时代的到来,基于数据驱动的故障诊断方法表现出了优秀的性能。深度学习应用于故障诊断以来,监督学习取得了巨大的发展,但当样本稀少或者缺失时,监督学习将缺乏训练的必要条件。提出了零小样本问题并分析了其在旋转机械故障诊断领域的现状;回顾了零小样本旋转机械故障诊断的发展历程、主流模型和当前研究热点;从零样本问题和小样本问题两个方面总结了现有研究成果并分析现有方法在零小样本问题中的应用。最后,展望了旋转机械故障诊断的零小样本方法的发展趋势。

关键词: 零样本, 小样本, 故障诊断, 数据扩充