WANG Baole, HUO Zhanqiang. Research on Feature Extraction of 3D Point Cloud Based on MANet[J]. Computer Engineering and Applications, 2022, 58(19): 267-275.
[1] 田永林,沈宇,李强,等.平行点云:虚实互动的点云生成与三维模型进化方法[J].自动化学报,2020,46(12):2572-2582.
TIAN Y L,SHEN Y,LI Q,et al.Parallel point clouds:Point clouds generation and 3D model evolution via virtual-real interaction[J].Acta Automatica Sinica,2020,46(12):2572-2582.
[2] 廖瑞杰,杨绍发,孟文霞,等.SegGraph:室外场景三维点云闭环检测算法[J].计算机研究与发展,2019,56(2):338-348.
LIAO R J,YANG S F,MENG W X,et al.SegGraph:An algorithm for loop-closure detection in outdoor scenes using 3D point clouds[J].Journal of Computer Research and Development,2019,56(2):338-348.
[3] BOLD N,ZHANG C,AKASHI T.3D point cloud retrieval with bidirectional feature Match[J].IEEE Access,2019,7(11):164194-164202.
[4] PRAKHYA S M,LIU B,LIN W,et al.B-SHOT:A binary 3D feature descriptor for fast Keypoint matching on 3D point clouds[J].Auton Robots,2017,41(7):1501-1520.
[5] 鲁斌,范晓明.基于改进自适应[k]均值聚类的三维点云骨架提取的研究[J].自动化学报,2020,45(10):1-13.
LU B,FAN X M.Research on 3D point cloud skeleton extraction based on improved adaptive k-means clustering[J].Acta Automatica Sinica,2020,45(10):1-13.
[6] RUSU R B,MARTON Z C,BLODOW N,et al.Learning informative point classes for the acquisition of object model maps[C]//Proceedings of the 10th International Conference on Control,Automation,Robotics and Vision,2008:643-650.
[7] RUSU R B,BRADSKI G,THIBAUX R,et al.Fast 3D recognition and pose using the viewpoint feature histogram[C]//Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,2010:2155-2162.
[8] SUN J,OVSJANIKOV M,GUIBAS L.A concise and provably informative multi-scale signature based on heat diffusion[J].Computer Graphics Forum,2009,28(5):1383-1392.
[9] HANG S,SUBHRANSU M,EVANGELOS K,et al.Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:945-953.
[10] LECUN,Y,BOSER,B,DENKER,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551.
[11] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations,2015:1-14.
[12] DENG Z,LATECKI J.Amodal detection of 3D objects:Inferring 3D bounding boxes from 2D ones in RGB-depth images[C]//Proceedings of Conference on Computer Vision and Pattern Recognition,2017:398-406.
[13] ENGELCKE M,RAO D,WANG Z,et al.Vote3deep:Fast object detection in 3D point clouds using efficient convolutional neural networks[C]//Proceedings of IEEE International Conference on Robotics and Automation,2017:1355-1361.
[14] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[15] LAHOUD J,GHANEM B.2D-driven 3D object detection in RGB-D images[C]//Proceedings of 2017 IEEE International Conference on Computer Vision,2017:4622-4630.
[16] MATURANA D,SCHERER S.VoxNet:A 3D convolutional neural network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems,2015:922-928.
[17] WU N Z,SONG S,KHOSLA A,et al.3D ShapeNets:A deep representation for volumetric shapes[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:1912-1920.
[18] TCHAPMI L.SEGCloud:Semantic segmentation of 3D point clouds[C]//Proceedings of International Conference on 3D Vision,2017:537-547.
[19] QI C R,SU H,MO K,et al.PointNet:Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:652-660.
[20] QI C R,YI L,SU H,et al.PointNet++:Deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems,2017:5099-5108.
[21] YE X Q,LI J M,HUANG H X,et al.3D recurrent neural networks with context fusion for point cloud semantic segmentation[C]//Proceedings of the European Conference on Computer Vision,2018:403-417.
[22] LI Y,BU R,SUN M,et al.PointCNN:Convolution on X-transformed points[C]//Advances in Neural Information Processing Systems,2018:828-838.
[23] LIN Z H,FENG M W,CICERO NOGUEIRA S.A self-attentive sentence embedding[C]//Proceedings of International Conference on Learning Representations,2017:3-5.
[24] SINGH P,MAZUMDER P,NAMBOODIRI V P.Accuracy Booster:Performance boosting using feature map re-calibration[C]//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision,2020:873-882.
[25] ZHU X,CHENG D,ZHANG Z,et al.An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision,2019:6687-6696.
[26] RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
[27] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common objects in context[C]//Proceedings of European Conference on Computer Vision,2014:740-755.
[28] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[29] ZHAO H,TIAN M,SUN S,et al.Spindle net:Person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1077-1085.
[30] CIGNONI P,CALLIERI M,CORSINI M,et al.MeshLab:An open-source mesh processing tool[C]//Proceedings of the Eurographics Italian Chapter Conference,2008:129-136.
[31] DAI A.ScanNet:Richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:1-22.
[32] LIAN Z,ZHANG J,CHOI S,et al.Non-rigid 3D shape retrieval[C]//Proceedings of the Eurographics Workshop on 3D Object Retrieval,2015:107-120.
[33] QI C R,SU H,NIEBNER M,et al.Volumetric and multi-view CNNs for object classification on 3D data[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:5648-5656.