Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (19): 276-283.DOI: 10.3778/j.issn.1002-8331.2104-0209

• Graphics and Image Processing • Previous Articles     Next Articles

Local Relation Convolution Network for 3D Point Cloud Classification and Segmentation

GAO Jinjin, LI Luyang   

  1. 1.Experimental Center, Shanxi University of Finance and Economics, Taiyuan 030016, China
    2.School of Data Science and Technology, North University of China, Taiyuan 030051, China
  • Online:2022-10-01 Published:2022-10-01

基于局部关系卷积的点云分类与分割模型

高金金,李潞洋   

  1. 1.山西财经大学 实验中心,太原 030016 
    2.中北大学 大数据学院,太原 030051

Abstract: Deep learning has been the main method of point cloud analysis, but the existing methods cannot fully refer to the local shape information while abstracting the point cloud feature, it is difficult to generate a suitable convolution for the shape feature because of the poor robustness of local shape transformations perception. Therefore, this paper proposes local relation convolution(LRConv), a convolution operator that perceives shape features through comprehensive local relations. Firstly, by referring to the low-dimensional spatial relations among all the neighborhood points in the local point cloud, a local relation description independent of the order and rigid transformations of the points is defined. Then, it uses the multi-layer perceptron(MLP) to obtain the convolution weight of each point in different local areas from relation description. Finally, the features of the points are transformed by the convolution weights, and the abstract features of the local areas are aggregated.Benchmark experiments show that the classification accuracy of the LRConv on ModelNet is improved by 2.1 percentage points over PointNet++, and the segmentation mean intersection over union(mIoU) of LRConv is improved by 1.5 percentage points. The experimental results fully verify the effectiveness of LRConv in feature abstraction.

Key words: point cloud, local relationship, classification and segmentation, convolutional neural network(CNN), deep learning

摘要: 深度学习已成为点云分析的主要方法,但是现有方法在点云特征抽象时无法充分参考局部形状信息,因此对局部形状变化感知的鲁棒性较差,难以针对形状特征生成合适的卷积核。为此,提出了局部关系卷积(local relation convolution,LRConv),一种通过全面局部关系感知形状特征的卷积算子。参考点云局部中所有邻域点之间的低维空间关系,定义了一种不依赖于点的顺序与刚性变换的局部关系描述;使用多层感知机从关系描述中学习得到局部区域中每个点对应的卷积权重;通过卷积权重来变换点的特征,并聚合局部区域的抽象特征。在基准测试实验中,LRConv分类网络在ModelNet上的分类准确率较PointNet++提高了2.1个百分点,LRConv零件分割网络在ShapeNet上的分割类别平均重合度较PointNet++提高了1.5个百分点。实验结果充分验证了LRConv在特征抽象中的有效性。

关键词: 点云, 局部关系, 分类与分割, 卷积神经网络, 深度学习