Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (7): 55-67.DOI: 10.3778/j.issn.1002-8331.2110-0307
• Research Hotspots and Reviews • Previous Articles Next Articles
YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing
Online:
2022-04-01
Published:
2022-04-01
杨锦帆,王晓强,林浩,李雷孝,杨艳艳,李科岑,高静
YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning[J]. Computer Engineering and Applications, 2022, 58(7): 55-67.
杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2110-0307
[1] CAO X,WU C,YAN P,et al.Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos[C]//Proceedings of the 18th IEEE International Conference on Image Processing,2011:2421-2424. [2] VOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001. [3] WANG X,HAN T X,YAN S.An HOG-LBP human detector with partial occlusion handling[C]//Proceedings of the IEEE 12th International Conference on Computer Vision,2009:32-39. [4] HONG Z.A preliminary study on artificial neural network[C]//Proceedings of the 6th IEEE Joint International Information Technology and Artificial Intelligence Conference,2011:336-338. [5] KAZEMI F M,SAMADI S,POORREZA H R,et al.Vehicle recognition using curvelet transform and SVM[C]//Proceedings of the 4th International Conference on Information Technology,2007:516-521. [6] WU S,NAGAHASHI H.Parameterized AdaBoost:Introducing a parameter to speed up the training of real AdaBoost[J].IEEE Signal Processing Letters,2014,21(6):687-691. [7] 李明熹,林正奎,曲毅.计算机视觉下的车辆目标检测算法综述[J].计算机工程与应用,2019,55(24):20-28. LI M X,LIN Z K,QU Y.Survey of vehicle object detection algorithm in computer vision[J].Computer Engineering and Applications,2019,55(24):20-28. [8] TSAI D,LAI S.Independent component analysis-based background subtraction for indoor surveillance[J].IEEE Transactions on Image Processing,2009,18(1):158-167. [9] LEE D S.Effective gaussian mixture learning for video background subtraction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):827-832. [10] MERLIN P M,FARBER D J.A parallel mechanism for detecting curves in pictures[J].IEEE Transactions on Computers,1975,24(1):96-98. [11] BERTHOLD K.P.HORN,BRIAN G.SCHUNCK.Deter mining optical flow[J].Artificial Intelligence,1981,17(1/3):185-203. [12] VIOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001. [13] FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al.Object detection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645. [14] NIE X,GAO Y,GAO F,et al.A novel vision based road detection algorithm for intelligent vehicle[C]//Proceedings of the IEEE International Conference on Power,Intelligent Computing and Systems(ICPICS),2019:504-507. [15] MAYA P,THARINI C.Performance analysis of lane detection algorithm using partial Hough transform[C]//Proceedings of the 21st International Arab Conference on Information Technology(ACIT),2020:1-4. [16] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:779-788. [17] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017:6517-6525. [18] REDMON J,FARHADI A.YOLOv3:An incremental improvement[J].arXiv:1804.02767,2018. [19] BOCHKOVSKIY A,WANG C Y,LIAO H Y.YOLOv4:Optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [20] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shot multibox detector[J].arXiv:1512.02325,2015. [21] FU C Y,LIU W,RANGA ANANTH,et al.DSSD:Deconvolutional single shot detector[J].arXiv:1701.06659,2017. [22] JISOO J,HYOGIN P,NOJUN K.Enhancement of SSD by concatenating feature maps for object detection[J].arXiv:1705.09587,2017. [23] SHEN Z,LIU Z,LI J,et al.DSOD:Learning deeply supervised object detectors from scratch[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV),2017:1937-1945. [24] LI Z X,ZHOU F Q.FSSD:Feature fusion single shot multibox detector[J].arXiv:1712.00960,2017. [25] LIN T,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV),2017:2999-3007. [26] ZHANG S,WEN L,BIAN X,et al.Single-shot refinement neural network for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:4203-4212. [27] ZHOU X Y,WANG D,KRAHENBUHL P.Objects as points[J].arXiv:1904.07850,2019. [28] HEI L,TENG Y,OLGA R,et al.CornerNet-Lite:Efficient keypoint based object detection[J].arXiv:1904.08900,2019. [29] TIAN Z,JIN Y,CAO H,et al.Real-time vehicle detection under complex road conditions[C]//Proceedings of the 2nd International Conference on Industrial Artificial Intelligence(IAI),2020:1-4. [30] 刘肯,何姣姣,张永平,等.改进YOLO的车辆检测算法[J].现代电子技术,2019,42(13):47-50. LIU K,HE J J,ZHANG Y P,et al.Improved YOLO vehicle detection algorithm[J].Modern Electronics Technique,2019,42(13):47-50. [31] CHOI J,CHUN D,KIM H,et al.Gaussian YOLOv3:An accurate and fast object detector using localization uncertainty for autonomous driving[C]//Proceedings of the IEEE/CVFIEEE International Conference on Computer Vision(ICCV),2019:502-511. [32] XU C J,YE Q,LIU J X,et al.Research on vehicle detection based on YOLOv3[C]//Proceedings of the 2nd International Conference on Information Technology and Computer Application(ITCA),2020:433-436. [33] 袁小平,马绪起,刘赛.改进YOLOv3的行人车辆目标检测算法[J].科学技术与工程,2021,21(8):3192-3198. YUAN X P,MA X Q,LIU S.An improved algorithm of pedestrian and vehicle detection based on YOLOv3[J].Science Technology and Engineering,2021,21(8):3192-3198. [34] 谢俊章,彭辉,唐健峰.改进YOLOv4的密集遥感目标检测[J].计算机工程与应用,2021,57(22):247-256. XIE J Z,PENG H,TANG J F.Improved YOLOv4’s dense remote sensing target detection[J].Computer Engineering and Applications,2021,57(22):247-256. [35] Do T H,TRAN D,.HOANG D Q,et al.A novel algorithm for estimating fast-moving vehicle speed in intelligent transport systems[C]//Proceedings of International Conference on Information Networking(ICOIN),2021:499-503. [36] 金宇尘,罗娜.结合多尺度特征的改进YOLOv2车辆实时检测算法[J].计算机工程与设计,2019,40(5):1457-1463. JIN Y C,LUO N.Improved YOLOv2 vehicle real-time detection algorithm combined with multi-scale features[J].Computer Engineering and Design,2019,40(5):1467-1463. [37] RHMAN Z,AMI A M,ULLAH M A.A real-time wrong-way vehicle detection based on YOLO and centroid tracking[C]//Proceedings of IEEE Region 10 Symposium(TENSYMP),202:916-920. [38] 顾恭,徐旭东.改进YOLOv3的车辆实时检测与信息识别技术[J].计算机工程与应用,2020,56(22):173-184. GU G,XU X D.Real-time vehicle detection and information recognition technology based on YOLOv3 improved algorithm[J].Computer Engineering and Applications,2020,56(22):173-184. [39] YONETSU S,IWAMOTO Y,CHEN Y W.Two-stage YOLOv2 for accurate license-plate detection in complex scenes[C]//Proceedings of IEEE International Conference on Consumer Electronics(ICCE),2019:1-4. [40] WANG Z,LI L,LI L,et al.Object detection algorithm based on improved YOLOv3-tiny network in traffic scenes[C]//Proceedings of the 4th CAA International Conference on Vehicular Control and Intelligence(CVCI),2020:514-518. [41] DU S,ZHANG P,ZHANG B,et al.Weak and occluded vehicle detection in complex infrared environment based on improved YOLOv4[J].IEEE Access,2021,9:25671-25680. [42] CAI Y,LUAN T,GAO H,et al.YOLOv4-5D:An effective and efficient object detector for autonomous driving[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-13. [43] HU X,WEI Z,ZHOU W.A video streaming vehicle detection algorithm based on YOLOv4[C]//Proceedings of the IEEE 5th Advanced Information Technology,Electronic and Automation Control Conference(IAEAC),2021:2081-2086. [44] 张宝朋,康谦泽,李佳萌.轻量化改进的YOLOv4目标检测算法[J/OL].计算机工程:1-13[2021-11-05].https://doi.org/10.19678/j.issn.1000-3428.0062216. ZHANG B P,KANG Q Z,LI J M.Light improved YOLOv4 target detection algorithm[J/OL].Computer Engineering:1-13[2021-11-05].https://doi.org/10.19678/j.issn.1000-3428.0062216. [45] WANG C,WANG H,YU F,et al.A high-precision fast smoky vehicle detection method based on improved YOLOv5 network[C]//Proceedings of the IEEE International Conference on Artificial Intelligence and Industrial Design(AIID),2021:255-259. [46] 张成标,童宝宏,程进,等.改进的Yolo_v2违章车辆检测方法[J].计算机工程与应用,2020,56(20):104-110. ZHANG C B,TONG B H,CHENG J,et al.Improved Yolo_v2 illegal vehicle detection method[J].Computer Engineering and Applications,2020,56(20):104-110. [47] 李珣,时斌斌,刘洋,等.基于改进YOLOv2模型的多目标识别方法[J].激光与光电子学进展,2020,57(10):113-122. LI X,SHI B B,LIU Y,et al.Multi-target recognition method based on improved YOLOv2 model[J].Laser and Optoelectronics Progress,2020,57(10):113-122. [48] 朱茂桃,邢浩,方瑞华.基于YOLO-TridentNet的车辆检测方法[J].重庆理工大学学报(自然科学),2020,34(11):1-8. ZHU M T,XING H,FANG R H.Vehicle detection based on YOLO-TridentNet[J].Journal of Chongqing University of Technology(Natural Science),2020,34(11):1-8. [49] XIAO D,SHAN F,LI Z,et al.A target detection model based on improved tiny-Yolov3 under the environment of mining truck[J].IEEE Access,2019,7:123757-123764. [50] CHEN S,LIN W.Embedded system real-time vehicle detection based on improved YOLO network[C]//Proceedings of the IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC),2019:1400-1403. [51] SINDHU V S.Vehicle identification from traffic video surveillance using YOLOv4[C]//Proceedings of the 5th International Conference on Intelligent Computing and Control Systems(ICICCS),2021:1768-1775. [52] ALSANABANI A A,SAEED S A,AL-MKHLAFI M,et al.A low cost and real time vehicle detection using enhanced YOLOv4-tiny[C]//Proceedings of the IEEE International Conference on Artificial Intelligence and Computer Applications(ICAICA),2021:372-377. [53] GUO X Y.Target detection of forward vehicle based on improved SSD[C]//Proceedings of the IEEE 6th International Conference on Cloud Computing and Big Data Analytics(ICCCBDA),2021:466-468. [54] 李国进,胡洁,艾矫燕.基于改进SSD算法的车辆检测[J].计算机工程,2022,48(1):266-274. LI G J,HU J,AI J Y.Vehicle detection based on improved SSD algorithm[J].Computer Engineering,2022,48(1):266-274. [55] 徐浩,杨德刚,蒋倩倩,等.基于SSD的轻量级车辆检测网络改进[J/OL].计算机工程与应用:1-10(2021-03-31)[2021-09-07].http://kns.cnki.net/kcms/detail/11.2127.TP. 20210331. 0930.002.html. XU H,YANG D G,JIANG Q Q,et al.Improvement of lightweight vehicle detection network based on SSD[J/OL].Computer Engineering and Applications:1-10(2021-03-31)[2021?09?07].http://kns.cnki.net/kcms/detail/11.2127.TP. 20210331.0930.002.html. [56] 乔延婷,陈万培,张涛.基于SSD的轻量级车辆检测网络[J].无线电工程,2020,50(11):926-931. QIAO Y T,CHEN W P,ZHANG T.A lightweight vehicle detection network based on SSD[J].Radio Engineering,2020,50(11):926-931. [57] 杨艳红,钟宝江,徐云龙.改进的SSD算法在智慧交通中的应用[J/OL].电讯技术:1-8[2021-11-06].http://kns.cnki.net/kcms/detail/51.1267.TN.20210531.1441.002.html. YANG Y H,ZHONG B J,XU Y L.Application of improved SSD algorithm in intelligent transportation[J/OL].Telecommunication Engineering:1-8[2021-11-06].http://kns.cnki.net/kcms/detail/51.1267.TN.20210531.1441.002.html. [58] 宋世奇,李旭,祝雪芬,等.基于改进SSD的航拍城市道路车辆检测方法[J].传感器与微系统,2021,40(1):114-117. SONG S Q,LI X,ZHU X F,et al.Urban road vehicle detetion method by aerial photography based on improved SSD[J].Transducer and Miscrosystem Technologies,2021,40(1):114-117. [59] RAJ M,CHANDAN S.Pedestrian and vehicle detection using night-vision camera through CNN on Indian roads[C]//Proceedings of the International Conference on Advances in Computing,Communication Control and Networking(ICACCCN),2018:1136-1142. [60] PIAO Z,ZHAO B,TANG L,et al.VDetor:An effective and efficient neural network for vehicle detection in aerial image[C]//Proceedings of the IEEE International Conference on Signal,Information and Data Processing(ICSIDP),2019:1-4. [61] 杨帆,吴韶波.基于SSD的目标车辆检测算法研究[J].物联网技术,2021,11(6):19-22. YANG F,WU S B.Research on target vehicle detection algorithm based on SSD[J].Internet of Things Technology,2021,11(6):19-22. [62] KITVIMONRAT A,WATCHARABUTSARAKHAM S.Vehicle manufacturer recognition(VMR) using SSD model[C]//Proceedings of the 18th International Conference on Electrical Engineering/Electronics,Computer,Telecommunications and Information Technology(ECTI-CON),2021:724-727. [63] LI H,YUAN J,LIU H,et al.Incremental learning of infrared vehicle detection method based on SSD[C]//Proceedings of the IEEE 20th International Conference on Communication Technology(ICCT),2020:1423-1426. [64] SAINI P,BIDHAN K,MALHOTRA S.A detection system for stolen vehicles using vehicle attributes with deep learning[C]//Proceedings of the 5th International Conference on Signal Processing,Computing and Control(ISPCC),2019:251-254. [65] CHEN K,SHOU T D,LI J K,et al.Vehicles detection on expressway via deep learning:Single shot multibox object detector[C]//Proceedings of the International Conference on Machine Learning and Cybernetics(ICMLC),2018:467-473. [66] 张炳力,秦浩然,江尚,等.基于RetinaNet及优化损失函数的夜间车辆检测方法[J].汽车工程,2021,43(8):1195-1202. ZHANG B L,QIN H R,JIANG S,et al.A method of vehicle detection at night based on RetinaNet and optimized loss functions[J].Automotive Engineering,2021,43(8):1195-1202. [67] 刘革,郑叶龙,赵美蓉.基于RetinaNet改进的车辆信息检测[J].计算机应用,2020,40(3):854-858. LIU G,ZHENG Y L,ZHAO M R.Vehicle information detection based on improved RetinaNet[J].Journal of Computer Applications,2020,40(3):854-858. [68] LI Y,CHEN Y,WANG N,et al.Scale-aware trident networks for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV),2019:6053-6062. [69] MA N,ZHANG X,ZHENG H T,et al.ShuffleNet v2:Practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision,2018. [70] 梁礼明,熊文,彭仁杰,等.基于中心点的多类别车辆检测算法[J].科学技术与工程,2021,21(7):2767-2772. LIANG L M,XIONG W,PENG R J,et al.Center-based algorithm for multi-class vehicle detection[J].Science Technology and Engineering,2021,21(7):2767-2772. [71] 宋欢欢,惠飞,景首才,等.改进的RetinaNet模型的车辆目标检测[J].计算机工程与应用,2019,55(13):225-230. SONG H H,HUI F,JING S C,et al.Improved RetinaNet model for vehicle target detection[J].Computer Engineering and Applications,2019,55(13):225-230. [72] 荣亮,高清维,李笑语,等.RefineDet网络与注意力机制结合的目标检测算法[J].传感器与微系统,2021,40(3):130-133. RONG L,GAO Q W,LI X Y,et al.Target detection algorithm combining RefineDet network and attention mechanism[J].Transducer and Microsystem Technologies,2021,40(3):130-133. [73] 梁礼明,熊文,蓝智敏,等.改进的CornerNet-Saccade车辆检测算法[J].重庆理工大学学报(自然科学),2021,35(6):137-146. LIANG L M,XIONG W,LAN Z M,et al.Improved CornerNet-Saccade algorithm for vehicle detection[J].Journal of Chongqing University of Technology(Natural Science),2021,35(6):137-146. [74] 易诗,周思尧,沈练,等.基于增强型轻量级网络的车载热成像目标检测方法[J].红外技术,2021,43(3):237-245. YI S,ZHOU S Y,SHEN L,et al.Vehicle-based thermal imaging target detection method based on enhanced lightweight network[J].Infrared Technology,2021,43(3):237-245. [75] 魏玮,杨茹,朱叶.改进CenterNet的遥感图像目标检测[J].计算机工程与应用,2021,57(6):191-199. WEI W,YANG R,SONG Y.Target detection of improved CenterNet to remote sensing images[J].Computer Engineering and Applications,2021,57(6):191-199. [76] TAFAZZOLI F,FRIGUI H,NISHIYAMA K.A large and diverse dataset for improved vehicle make and model recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2017:874-881. [77] XIA G S,BAI X,DING J,et al.DOTA:A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3974-3983. [78] ALSANABANI A A,AHMED M A,AL SMADI A M.Vehicle counting using detecting-tracking combinations:A comparative analysis[C]//Proceedings of the 4th International Conference on Video and Image Processing,2020:48-54. [79] DONG Z,PEI M,HE Y,et al.Vehicle type classification using unsupervised convolutional neural network[C]//Proceedings of the 22nd International Conference on Pattern Recognition,2014:172-177. |
[1] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[2] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[3] | WANG Bin, LI Xin. Research on Multi-Source Domain Adaptive Algorithm Integrating Dynamic Residuals [J]. Computer Engineering and Applications, 2022, 58(7): 162-166. |
[4] | TAN Shuqiu, TANG Guofang, TU Yuanya, ZHANG Jianxun, GE Panjie. Classroom Monitoring Students Abnormal Behavior Detection System [J]. Computer Engineering and Applications, 2022, 58(7): 176-184. |
[5] | ZHANG Meiyu, LIU Yuehui, HOU Xianghui, QIN Xujia. Automatic Coloring Method for Gray Image Based on Convolutional Network [J]. Computer Engineering and Applications, 2022, 58(7): 229-236. |
[6] | ZHANG Zhuangzhuang, QU Licheng, LI Xiang, ZHANG Minghao, LI Zhaolu. Traffic Flow Prediction with Missing Data Based on Spatial-Temporal Convolutional Neural Networks [J]. Computer Engineering and Applications, 2022, 58(7): 259-265. |
[7] | XU Jie, ZHU Yukun, XING Chunxiao. Research on Financial Trading Algorithm Based on Deep Reinforcement Learning [J]. Computer Engineering and Applications, 2022, 58(7): 276-285. |
[8] | ZHANG Hao, ZHANG Xiaoyu, ZHANG Zhenyou, LI Wei. Summary of Intrusion Detection Models Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(6): 17-28. |
[9] | WANG Xinpeng, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, MENG Chuang, GAO Jing. Review on Improvement of Typical Object Detection Algorithms in Deep Learning [J]. Computer Engineering and Applications, 2022, 58(6): 42-57. |
[10] | CHEN Jiatao, ZHANG Hongkai, HUANG Yanping, LAN Gongpu, XU Jingjiang, QIN Jia, AN Lin. Video-Based Physiological Parameters Measurement Technology and Research Advances [J]. Computer Engineering and Applications, 2022, 58(6): 58-68. |
[11] | WANG Jing, WANG Kai, YAN Yingjian. Research on Side Channel Attack Technology Based on Conditional Generation Against Network [J]. Computer Engineering and Applications, 2022, 58(6): 110-117. |
[12] | LI Yanchen, ZHANG Xiaojun, ZHANG Minglu, SHEN Liangyi. Object Detection in Autonomous Driving Scene Based on Improved Efficientdet [J]. Computer Engineering and Applications, 2022, 58(6): 183-191. |
[13] | ZHANG Zhenwei, HAO Jianguo, HUANG Jian, PAN Chongyu. Review of Few-Shot Object Detection [J]. Computer Engineering and Applications, 2022, 58(5): 1-11. |
[14] | LU Bingjie, LI Weizhuo, NA Chongning, NIU Zuoyao, CHEN Kui. Survey of Auto Insurance Fraud Detection with Machine Learning Models [J]. Computer Engineering and Applications, 2022, 58(5): 34-49. |
[15] | QIU Ye, SHAO Xiongkai, GAO Rong, WANG Chunzhi, LI Jing. Social Recommendation Algorithm Based on Attention Gated Neural Network [J]. Computer Engineering and Applications, 2022, 58(5): 112-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||