Chinese Named Entity Recognition Based on Gated Multi-Feature Extractors
YANG Rongying, HE Qing, DU Nisuo
1.College of Big Data & Information Engineering, Guizhou University, Guiyang 550025, China
2.Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
3.Guizhou Province Big Data Industry Development and Application Research Institute, Guizhou University, Guiyang 550025, China
YANG Rongying, HE Qing, DU Nisuo. Chinese Named Entity Recognition Based on Gated Multi-Feature Extractors[J]. Computer Engineering and Applications, 2022, 58(8): 117-124.
[1] COWIE J,LEHNERT W.Information extraction[J].Commnications of the ACM,1996,39(1):80-91.
[2] HOCHRCITER S.Untersuchungen zu dynamisch neuronalen Netzen[D].Technische Uniersitat Muchen,1991.
[3] HOCHREITER S,SCHNIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1725-1780.
[4] CHO K,VAN M B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,Doha,Qatar,October 25-29,2014:1724-1734.
[5] COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing(almost) from scratch[J].Journal of Machine Learning Research,2011,12(8):2492-2537.
[6] HUANG Z,XU W,YU K.Bidirectional LSTM-CRF models for sequence tagging[J].arXiv:1508.01991,2015.
[7] 赵丰,黄健,张中杰.LAC-DGLU:基于CNN和注意力机制的命名实体识别模型[J].计算机科学,2020,47(11):212-219.
ZHAO F,HUANG J,ZHANG Z J.LAC-DGLU:named entiy recognition model based on CNN and attention mechanism[J].Computer Science,2020,47(11):212-219.
[8] CAO P F,CHEN Y B,LIU K,et al.Adversarial transfer learning for Chinese named entity recognition with self-attention mechanism[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,Brussels,Belgium,2018:182-192.
[9] WU F,LIU J,WU C,et al.Neural chinese named entity recognition via CNN-LSTM-CRF and joint training with word segmentation[J].arXiv:1905.01964,2019.
[10] XUAN Z Y,BAO R,MA C Y,et al.FGN:fusion glyph network for Chinese named entity recognition[J].arXiv:2001.05272,2020.
[11] ZHOU Y,ZHENG X Q,HUANG X J.Chinese named entity recognition augmented with lexicon memory[J].arXiv:1912.08282,2019.
[12] 李健龙,王盼卿,韩琪羽.基于双向LSTM的军事命名实体识别[J].计算机工程与科学,2019,41(4):713-718.
LI J L,WANG P Q,HAN Q Y.Military named entity recognition based on bidirectional LSTM[J].Computer Engineering & Science,2019,41(4):713-718.
[13] ZHU Y Y,WANG G X,KARLSSON B F.CAN-NER:convolutional attention network for Chinese named entity recognition[J].arXiv:1904.02141,2019.
[14] DEVLIN J,CHUANG M,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[J].Computation and Language,2018:1810-4805.
[15] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015.
[16] STRUBELL E,VERGA P,BELANGER D,et al.Fast and accurate entity recognition with iterated dilated convolutions[J].arXiv:1702.02098,2017.
[17] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems,Long Beach,USA,2017:5998-6008.
[18] 毛明毅,吴晨,钟义信,等.加入自注意力机制的BERT命名实体识别模型[J].智能系统学报,2020,15(4):1-8.
MAO M Y,WU C,ZHONG Y X,et al.BERT named entity recognition model with self-attention mechanism[J].CAAI Transactions on Intelligent Systems,2020,15(4):1-8.
[19] LEVOW G.The third international Chinese language processing bakeoff:word segmentation and named entity recognition[C]//Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing,Sydney,2006:108-117.
[20] ZHUANG Y,YANG J.Chinese NER using lattice LSTM[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics(ACL),2018:1554-1564.
[21] GUI T,MA R T,ZHANG Q,et al.CNN-based Chinese NER with lexicon rethinking[C]//Proceedings of Twenty-Eighth International Joint Conference on Artificial Intelligence(IJCAI-19),Macao,China,2019:4982-4988.
[22] XUE M G,YU B W,LIU T W,et al.Porous lattice-based transformer encoder for Chinese NER[J].arXiv:1911.
02733v1,2019.