[1] KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37.
[2] WANG H,ZHANG F,HOU M,et al.Shine:signed hetero-geneous information network embedding for sentiment l?ink prediction[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining,2018:592-600.
[3] WANG Q,MAO Z,WANG B,et al.Knowledge graph embedding:a survey of approaches and applications[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743.
[4] LIN H,LIU Y,WANG W,et al.Learning entity and relation embeddings for knowledge resolution[J].Procedia Computer Science,2017,108:345-354.
[5] XU C,BAI Y,BIAN J,et al.Rc-net:a general framework for incorporating knowledge into word representations[C]//Proceedings of the 23rd ACM International Conference on Information and Knowledge Management,2014:1219-1228.
[6] 秦川,祝恒书,庄福振,等.基于知识图谱的推荐系统研究综述[J].中国科学:信息科学,2020,50(7):937-956.
QIN C,ZU H S,ZHUANG F Z,et al.A survey on knowledge graph-based recommender systems[J].Scientia Sinica:Informationis,2020,50(7):937-956.
[7] ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016:353-362.
[8] WANG H W,ZHANG F Z,XIE X,et al.DKN:Deep knowledge-aware network for news recommendation[C]//The 27th International Conference on World Wide Web,2018:1835-1844.
[9] 李浩,张亚钏,康雁,等.融合循环知识图谱和协同过滤电影推荐算法[J].计算机工程与应用,2020,56(2):106-114.
LI H,ZHANG Y C,KANG Y,et al.Fusion recurrent knowledge graph and collaborative filtering movie recommendation algorithm[J].Computer Engineering and Applications,2020,56(2):106-114.
[10] YU X,REN X,SUN Y Z,et al.Personalized entity recommendation:a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining,2014:283-292.
[11] LUO C,PANG W,WANG Z,et al.Hetecf:social-based collaborative filtering recommendation using heterogeneous relations[C]//2014 IEEE International Conference on Data Mining,2014:917-922.
[12] BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relationaldata[C]//Advances in Neural Information Processing Systems,2013:2787-2795.
[13] WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,2014:1112-1119.
[14] TROUILLON T,WELBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Conference on Machine Learning,2016:2071-2080.
[15] Nickel M,Tresp V,Kriegel H P.A three-way model for collective learning on multi-relational data[C]//International Conference on Machine Learning,2011:809-816.
[16] BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning toalign and translate[J].arXiv:1409.0473,2014.
[17] 谭台哲,晏家斌.基于注意力模型的混合推荐系统[J].计算机工程与应用,2020,56(13):172-180.
TAN T Z,YAN J B.Hybrid recommendation system based on self-attention model[J].Computer Engineering and Applications,2020,56(13):172-180.
[18] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems,2013:3111-3119.
[19] WANG H W,ZHANG F Z,ZHAO M,et al.Multi-task feature learning for knowledge graph enhanced recommendation[J].arXiv:1901.08907,2019.
[20] RENDLE S.Factorization machines with libfm[J].ACM Transactions on Intelligent Systems and Technology(TIST),2012,3(3):1-22.
[21] CHENG H T,KOC L,HARMSEN J,et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,2016:7-10.