[1] 左欢. 基于深度学习的钢材表面缺陷检测[D]. 西安: 西安工业大学, 2024.
ZUO H. Steel surface defect detection based on deep learning[D]. Xi’an: Xi’an Technological University, 2024.
[2] 杨春龙, 吕东澔, 张勇, 等. 融合自适应下采样的带钢表面缺陷检测算法[J]. 钢铁研究学报, 2024, 36(6): 806-816.
YANG C L, LYU D H, ZHANG Y, et al. Fusion of adaptive down-sampling for strip steel surface defect[J]. Journal of Iron and Steel Research, 2024, 36(6): 806-816.
[3] ZHANG D H, HAO X Y, WANG D C, et al. An efficient lightweight convolutional neural network for industrial surface defect detection[J]. Artificial Intelligence Review, 2023, 56(9): 10651-10677.
[4] 卢俊哲, 张铖怡, 刘世鹏, 等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15): 318-328.
LU J Z, ZHANG C Y, LIU S P, et al. Lightweight DCN-YOLO for strip surface defect detection in complex environments[J]. Computer Engineering and Applications, 2023, 59(15): 318-328.
[5] CHEN H X, DU Y Z, FU Y Q, et al. DCAM-Net: a rapid detec-tion network for strip steel surface defects based on deformable convolution and attention mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5005312.
[6] 赵佰亭, 张晨, 贾晓芬. ECC-YOLO: 一种改进的钢材表面缺陷检测方法[J]. 电子测量与仪器学报, 2024, 38(4): 108-116.
ZHAO B T, ZHANG C, JIA X F. ECC-YOLO: an improved method for detecting surface defects in steel[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(4): 108-116.
[7] 徐洪俊, 唐自强, 张锦东, 等. 钢材表面缺陷检测的YOLOv5s算法优化研究[J]. 计算机工程与应用, 2024, 60(7): 306-314.
XU H J, TANG Z Q, ZHANG J D, et al. Research on optimization of YOLOv5s detection algorithm for steel surface defect[J]. Computer Engineering and Applications, 2024, 60(7): 306-314.
[8] LI Z G, WEI X M, HASSABALLAH M, et al. A deep learning model for steel surface defect detection[J]. Complex & Intelligent Systems, 2024, 10(1): 885-897.
[9] 周彦, 孟江南, 王冬丽, 等. 基于多尺度轻量化注意力的钢材缺陷检测[J]. 控制与决策, 2024, 39(3): 901-909.
ZHOU Y, MENG J N, WANG D L, et al. Steel defect detection based on multi-scale lightweight attention[J]. Control and Decision, 2024, 39(3): 901-909.
[10] MA X, DAI X Y, BAI Y, et al. Rewrite the stars[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5694-5703.
[11] LEE J, PARK S, MO S, et al. Layer-adaptive sparsity for the magnitude-based pruning[J]. arXiv:2010.07611, 2020.
[12] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[13] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[14] HAN Y M, WANG L, WANG Y Q, et al. Intelligent small sample defect detection of concrete surface using novel deep learning integrating improved YOLOv5[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(2): 545-547.
[15] HUANG H J, CHEN Z G, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 178: 108784.
[16] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[17] LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14420-14430.
[18] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[19] QIN D F, LEICHNER C, DELAKIS M, et al. MobileNetV4: universal models for the mobile ecosystem[J]. arXiv:2404. 10518, 2024.
[20] TAN M X, CHEN B, PANG R M, et al. MnasNet: platform-aware neural architecture search for mobile[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2815-2823.
[21] HAN K, WANG Y H, ZHANG Q L, et al. Model rubik’s cube: twisting resolution, depth and width for TinyNets[C]//Advances in Neural Information Processing Systems 33, 2020: 19353-19364.
[22] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[23] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[24] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[25] YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2024: 2184-2189.
[26] JIANG Y Q, TAN Z Y, WANG J Y, et al. GiraffeDet: a heavy-neck paradigm for object detection[J]. arXiv:2202.04256, 2022.
[27] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[28] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 11863-11874.
[29] WAN D H, LU R S, SHEN S Y, et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106442.
[30] XU W, WAN Y. ELA: efficient local attention for deep convolutional neural networks[J]. arXiv:2403.01123, 2024.
[31] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[32] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[33] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[34] VARGHESE R, M S. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems. Piscataway: IEEE, 2024: 1-6.
[35] 梁礼明, 龙鹏威, 卢宝贺, 等. 改进GBS-YOLOv7t的钢材表面缺陷检测[J]. 光电工程, 2024, 51(5): 61-73.
LIANG L M, LONG P W, LU B H, et al. Improvement of GBS-YOLOv7t for steel surface defect detection[J]. Opto-Electronic Engineering, 2024, 51(5): 61-73.
[36] 马肖瑶, 黎睿, 李自力, 等. 面向工业场景带钢表面缺陷检测的LF-YOLO[J]. 计算机工程与应用, 2024, 60(18): 78-87.
MA X Y, LI R, LI Z L, et al. LF-YOLO for strip surface defect detection in industrial scenes[J]. Computer Engineering and Applications, 2024, 60(18): 78-87. |